Menu Close

If-x-y-z-1-with-0-lt-x-y-z-lt-1-2-then-find-tbe-range-of-values-of-1-x-y-1-y-z-1-z-x-




Question Number 15721 by ajfour last updated on 13/Jun/17
If    x+y+z=1       with 0<x, y, z <(1/2)   then find tbe  range of values of     (1/(x+y))+(1/(y+z))+(1/(z+x)) .
If\boldsymbolx+\boldsymboly+\boldsymbolz=1with0<x,y,z<12thenfindtberangeofvaluesof1\boldsymbolx+\boldsymboly+1\boldsymboly+\boldsymbolz+1\boldsymbolz+\boldsymbolx.
Answered by mrW1 last updated on 13/Jun/17
 (1/(x+y))+(1/(y+z))+(1/(z+x))=(1/(x+y))+(1/(1−x))+(1/(1−y))  let f(x,y)=(1/(x+y))+(1/(1−x))+(1/(1−y))  (∂f/∂x)=−(1/((x+y)^2 ))+(1/((1−x)^2 ))  (∂^2 f/∂x^2 )=(2/((x+y)^3 ))+(2/((1−x)^3 ))    (∂f/∂y)=−(1/((x+y)^2 ))+(1/((1−y)^2 ))  (∂^2 f/∂y^2 )=(2/((x+y)^3 ))+(2/((1−y)^3 ))  (∂^2 f/(∂x∂y))=(2/((x+y)^3 ))    (∂f/∂x)=−(1/((x+y)^2 ))+(1/((1−x)^2 ))=0  ⇒x+y=1−x     ...(i)    (∂f/∂y)=−(1/((x+y)^2 ))+(1/((1−y)^2 ))=0  ⇒x+y=1−y    ...(ii)    from (i)and (ii)  ⇒x=y=(1/3)  f((1/3),(1/3))=(1/((1/3)+(1/3)))+(1/(1−(1/3)))+(1/(1−(1/3)))=(9/2)  ((∂^2 f((1/3),(1/3)))/∂x^2 )=(2/(((2/3))^3 ))+(2/(((2/3))^3 ))=((27)/2)>0  ((∂^2 f((1/3),(1/3)))/∂y^2 )=(2/(((2/3))^3 ))+(2/(((2/3))^3 ))=((27)/2)>0  ((∂^2 f((1/3),(1/3)))/(∂x∂y))=(2/(((2/3))^3 ))=((27)/4)>0  ⇒f((1/3),(1/3))=(9/2) is the minimum!    lim_(x→0,y→0) f(x,y)  =lim_(x→0)  [lim_(y→0) f(x,y)]  =lim_(x→0)  [lim_(y→0) ((1/(x+y))+(1/(1−x))+(1/(1−y)))]  =lim_(x→0)  [(1/x)+(1/(1−x))+1]  =lim_(x→0)  [(1/x)]+1+1  =+∞    ⇒  (1/(x+y))+(1/(y+z))+(1/(z+x)) ∈[(9/2),+∞)
1\boldsymbolx+\boldsymboly+1\boldsymboly+\boldsymbolz+1\boldsymbolz+\boldsymbolx=1x+y+11x+11yletf(x,y)=1x+y+11x+11yfx=1(x+y)2+1(1x)22fx2=2(x+y)3+2(1x)3fy=1(x+y)2+1(1y)22fy2=2(x+y)3+2(1y)32fxy=2(x+y)3fx=1(x+y)2+1(1x)2=0x+y=1x(i)fy=1(x+y)2+1(1y)2=0x+y=1y(ii)from(i)and(ii)x=y=13f(13,13)=113+13+1113+1113=922f(13,13)x2=2(23)3+2(23)3=272>02f(13,13)y2=2(23)3+2(23)3=272>02f(13,13)xy=2(23)3=274>0f(13,13)=92istheminimum!limfx0,y0(x,y)=limx0[limfy0(x,y)]=limx0[limy0(1x+y+11x+11y)]=limx0[1x+11x+1]=limx0[1x]+1+1=+1\boldsymbolx+\boldsymboly+1\boldsymboly+\boldsymbolz+1\boldsymbolz+\boldsymbolx[92,+)
Commented by ajfour last updated on 13/Jun/17
thanks sir, you are far too  generous!
thankssir,youarefartoogenerous!
Commented by mrW1 last updated on 13/Jun/17
thank you sir! i do also learn from you.
thankyousir!idoalsolearnfromyou.thankyousir!idoalsolearnfromyou.

Leave a Reply

Your email address will not be published. Required fields are marked *