Menu Close

If-x-y-z-15-and-xy-yz-zx-85-find-x-2-y-2-z-2-




Question Number 50710 by Tawa1 last updated on 19/Dec/18
If  x + y + z = 15  and  xy + yz + zx  = 85,   find   x^2  + y^2  + z^2
$$\mathrm{If}\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{15}\:\:\mathrm{and}\:\:\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}\:\:=\:\mathrm{85},\:\:\:\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \\ $$
Answered by mr W last updated on 19/Dec/18
(x+y+z)^2 =(x+y)^2 +2(x+y)z+z^2   (x+y+z)^2 =x^2 +2xy+y^2 +2xz+2yz+z^2   (x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+yz+zx)  ⇒x^2 +y^2 +z^2 =(x+y+z)^2 −2(xy+yz+zx)  =15^2 −2×85  =55
$$\left({x}+{y}+{z}\right)^{\mathrm{2}} =\left({x}+{y}\right)^{\mathrm{2}} +\mathrm{2}\left({x}+{y}\right){z}+{z}^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\mathrm{2}{xy}+{y}^{\mathrm{2}} +\mathrm{2}{xz}+\mathrm{2}{yz}+{z}^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}\left({xy}+{yz}+{zx}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\left({x}+{y}+{z}\right)^{\mathrm{2}} −\mathrm{2}\left({xy}+{yz}+{zx}\right) \\ $$$$=\mathrm{15}^{\mathrm{2}} −\mathrm{2}×\mathrm{85} \\ $$$$=\mathrm{55} \\ $$
Commented by Tawa1 last updated on 19/Dec/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by afachri last updated on 19/Dec/18
(x+y+z)^2  = x^2 +y^2 +z^2 + 2(xy+yz+xz)          15^2            = x^2 +y^2 +z^2 +2(85)  225−170    = x^2 +y^2 +z^2   x^2 +y^2 +z^2 = 55
$$\left({x}+{y}+{z}\right)^{\mathrm{2}} \:=\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} +\:\mathrm{2}\left(\boldsymbol{{xy}}+\boldsymbol{{yz}}+\boldsymbol{{xz}}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{15}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:=\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{85}\right) \\ $$$$\mathrm{225}−\mathrm{170}\:\:\:\:=\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} =\:\mathrm{55} \\ $$
Commented by Tawa1 last updated on 19/Dec/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *