Menu Close

if-x-y-z-are-three-distinct-complex-numbers-such-that-x-y-z-y-z-x-z-x-y-0-then-find-the-value-of-x-2-y-z-2-




Question Number 192160 by universe last updated on 10/May/23
if x,y,z are three distinct complex numbers  such that (x/(y−z))+(y/(z−x))+(z/(x−y)) = 0 then   find the value of  Σ (x^2 /((y−z)^2 ))
ifx,y,zarethreedistinctcomplexnumberssuchthatxyz+yzx+zxy=0thenfindthevalueofΣx2(yz)2
Commented by mehdee42 last updated on 09/May/23
Σ ?
Σ?
Commented by Frix last updated on 09/May/23
(x/(y−x))+(y/(z−x))+(z/(x−y)), no symmetry, really?
xyx+yzx+zxy,nosymmetry,really?
Commented by Frix last updated on 09/May/23
(x/(y−z))+(y/(z−x))+(z/(x−y))=0  ⇒  (x^2 /((y−z)^2 ))+(y^2 /((z−x)^2 ))+(z^2 /((x−y)^2 ))=2
xyz+yzx+zxy=0x2(yz)2+y2(zx)2+z2(xy)2=2
Answered by York12 last updated on 09/May/23
((x−z)/(y−x))=(y/(x−z)) → (x−z)^2 =y(y−x)  ((x−z)/(y−x))+((+_− (√y))/(+_− (√(y−x))))=((+_− 2(√y))/(+_− (√(y−x))))=0 → y=0  ∴ x=z  ∴ Σ_(sym) (x^2 /((y−z)^2 ))=2
xzyx=yxz(xz)2=y(yx)xzyx++y+yx=+2y+yx=0y=0x=zsymx2(yz)2=2

Leave a Reply

Your email address will not be published. Required fields are marked *