Question Number 161280 by HongKing last updated on 15/Dec/21
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}}\:=\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{xyz} \\ $$
Answered by 1549442205PVT last updated on 16/Dec/21
$${From}\:{the}\:{hypothesis}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}}\:=\:\mathrm{1} \\ $$$${we}\:{get}\:{xy}+{yz}+{zx}+\mathrm{2}\left({x}+{y}+{z}\right)+\mathrm{3}={xyz}+{xy}+{yz}+{zx}+{x}+{y}+{z}+\mathrm{1} \\ $$$${or}\:{x}+{y}+{z}+\mathrm{2}={xyz}.{Hence},{the}\:{inequality} \\ $$$${which}\:{we}\:{need}\:{prove}\:{to}\:{be}\:{equivalent}\:{to}\: \\ $$$$\mathrm{4}\left({x}+{y}+{z}\right)\geqslant\mathrm{3}\left({x}+{y}+{z}+\mathrm{2}\right)\Leftrightarrow{x}+{y}+{z}\geqslant\mathrm{6}\left(\ast\right) \\ $$$${From}\:{the}\:{hypothesis}\:{x}+{y}+{z}+\mathrm{2}={xyz}, \\ $$$${applying}\:{the}\:{inequality}\:{AM}−{GM}\:{we} \\ $$$${have}\:{x}+{y}+{z}+\mathrm{2}={xyz}\leqslant\left(\frac{{x}+{y}+{z}}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{a}^{\mathrm{3}} −\mathrm{27}{a}−\mathrm{54}\geqslant\mathrm{0}\Rightarrow\left({a}−\mathrm{6}\right)\left({a}^{\mathrm{2}} +\mathrm{6}{a}+\mathrm{9}\right)\geqslant\mathrm{0} \\ $$$$\Leftrightarrow\left({a}−\mathrm{6}\right)\left({a}+\mathrm{3}\right)^{\mathrm{2}} \geqslant\mathrm{0}\Rightarrow{a}={x}+{y}+{z}\geqslant\mathrm{6} \\ $$$${Thus},{the}\:{inequality}\:\left(\ast\right){proved},{so} \\ $$$${x}+{y}+{z}\geqslant\frac{\mathrm{3}}{\mathrm{4}}{xyz}\left({q}.{e}.{d}\right) \\ $$$${The}\:{equality}\:{occurs}\:{if}\:{and}\:{only}\:{if} \\ $$$${x}={y}={z}=\mathrm{2} \\ $$
Commented by HongKing last updated on 17/Dec/21
$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you} \\ $$