Menu Close

if-x-y-z-gt-0-xy-yz-zx-1-prove-that-xyz-1-x-3-1-y-3-1-z-3-1-3-1-




Question Number 144600 by mathdanisur last updated on 26/Jun/21
if x,y,z>0 ; xy+yz+zx=1 prove that:  xyz + (((1+x^3 )(1+y^3 )(1+z^3 )))^(1/3)  ≥ 1
$${if}\:{x},{y},{z}>\mathrm{0}\:;\:{xy}+{yz}+{zx}=\mathrm{1}\:{prove}\:{that}: \\ $$$${xyz}\:+\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{y}^{\mathrm{3}} \right)\left(\mathrm{1}+{z}^{\mathrm{3}} \right)}\:\geqslant\:\mathrm{1} \\ $$
Answered by mindispower last updated on 27/Jun/21
x,y,z>0  or only z>0
$${x},{y},{z}>\mathrm{0} \\ $$$${or}\:{only}\:{z}>\mathrm{0} \\ $$
Commented by mathdanisur last updated on 27/Jun/21
Thanks Sir, how...
$${Thanks}\:{Sir},\:{how}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *