Menu Close

if-x-y-z-R-and-1-x-2-1-y-2-1-z-2-27-4-prove-that-x-3-y-2-x-2-y-2-y-3-z-2-y-2-z-2-z-3-x-2-z-2-x-2-5-2-




Question Number 151142 by mathdanisur last updated on 18/Aug/21
if  x;y;z∈R^+   and  (1/x^2 ) + (1/y^2 ) + (1/z^2 ) = ((27)/4)  prove that:  ((x^3  + y^2 )/(x^2  + y^2 )) + ((y^3  + z^2 )/(y^2  + z^2 )) + ((z^3  + x^2 )/(z^2  + x^2 )) ≥ (5/2)
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\in\mathbb{R}^{+} \:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} }\:=\:\frac{\mathrm{27}}{\mathrm{4}} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} }\:+\:\frac{\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{x}^{\mathrm{2}} }{\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{2}} }\:\geqslant\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *