Menu Close

If-x-yi-4-a-bi-show-that-a-2-b-2-x-2-y-2-4-




Question Number 168208 by MathsFan last updated on 06/Apr/22
 If (x+yi)^4 =a+bi,   show that a^2 +b^2 =(x^2 +y^2 )^4
If(x+yi)4=a+bi,showthata2+b2=(x2+y2)4
Commented by MJS_new last updated on 06/Apr/22
you can do it yourself  (1) expand (x+yi)^4 =term1  (2) a=real (term1) ∧ b=imag (term1)  (3) expand a^2 +b^2 =term2  (4) sort term2 and you should see the       factors 1 4 6 4 1 ⇒ there you are
youcandoityourself(1)expand(x+yi)4=term1(2)a=real(term1)b=imag(term1)(3)expanda2+b2=term2(4)sortterm2andyoushouldseethefactors14641thereyouare
Answered by mr W last updated on 06/Apr/22
generally we have  if z_1 =z_2 , then ∣z_1 ∣=∣z_2 ∣.  if z_1 =z_2 ^n , then ∣z_1 ∣=∣z_2 ∣^n .  applying this we get   from (x+yi)^4 =a+bi  ∣x+yi∣^4 =∣a+bi∣, or  ((√(x^2 +y^2 )))^4 =(√(a^2 +b^2 )), or  (x^2 +y^2 )^4 =a^2 +b^2
generallywehaveifz1=z2,thenz1∣=∣z2.ifz1=z2n,thenz1∣=∣z2n.applyingthiswegetfrom(x+yi)4=a+bix+yi4=∣a+bi,or(x2+y2)4=a2+b2,or(x2+y2)4=a2+b2
Commented by MathsFan last updated on 19/Apr/22
thank you sir
thankyousir
Answered by Mathspace last updated on 06/Apr/22
(x+yi)^4 =a+bi ⇒(x−yi)^4 =a−bi ⇒  (a+bi)(a−bi)=(x+yi)^4 (x−yi)^4  ⇒  a^2 +b^2 =((x+yi)(x−yi))^4  ⇒  a^2 +b^2 =(x^2 +y^2 )^4
(x+yi)4=a+bi(xyi)4=abi(a+bi)(abi)=(x+yi)4(xyi)4a2+b2=((x+yi)(xyi))4a2+b2=(x2+y2)4
Commented by mr W last updated on 07/Apr/22
how do you get  (x+yi)^4 =a+bi ⇒(x−yi)^4 =a−bi?  it is not obvious.
howdoyouget(x+yi)4=a+bi(xyi)4=abi?itisnotobvious.

Leave a Reply

Your email address will not be published. Required fields are marked *