Menu Close

If-x-z-tan-1-yz-and-z-z-x-y-find-z-x-z-y-




Question Number 156824 by Tawa11 last updated on 15/Oct/21
If      x   −   z    =    tan^(− 1) (yz)     and      z   =   z(x,  y),      find    ((δz)/(δx)) ,   ((δz)/(δy))
$$\mathrm{If}\:\:\:\:\:\:\mathrm{x}\:\:\:−\:\:\:\mathrm{z}\:\:\:\:=\:\:\:\:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{yz}\right)\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\mathrm{z}\:\:\:=\:\:\:\mathrm{z}\left(\mathrm{x},\:\:\mathrm{y}\right),\:\:\:\:\:\:\mathrm{find}\:\:\:\:\frac{\delta\mathrm{z}}{\delta\mathrm{x}}\:,\:\:\:\frac{\delta\mathrm{z}}{\delta\mathrm{y}} \\ $$
Answered by mr W last updated on 16/Oct/21
1−(∂z/∂x)=(y/(1+y^2 z^2 ))×(∂z/∂x)  ((y/(1+y^2 z^2 ))+1)×(∂z/∂x)=1  ⇒(∂z/∂x)=((1+y^2 z^2 )/(1+y+y^2 z^2 ))  −(∂z/∂y)=(1/(1+y^2 z^2 ))(z+y(∂z/∂y))  (1+(y/(1+y^2 z^2 )))(∂z/∂y)=(z/(1+y^2 z^2 ))  ⇒(∂z/∂y)=(z/(1+y+y^2 z^2 ))
$$\mathrm{1}−\frac{\partial{z}}{\partial{x}}=\frac{{y}}{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} }×\frac{\partial{z}}{\partial{x}} \\ $$$$\left(\frac{{y}}{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} }+\mathrm{1}\right)×\frac{\partial{z}}{\partial{x}}=\mathrm{1} \\ $$$$\Rightarrow\frac{\partial{z}}{\partial{x}}=\frac{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} }{\mathrm{1}+{y}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} } \\ $$$$−\frac{\partial{z}}{\partial{y}}=\frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} }\left({z}+{y}\frac{\partial{z}}{\partial{y}}\right) \\ $$$$\left(\mathrm{1}+\frac{{y}}{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} }\right)\frac{\partial{z}}{\partial{y}}=\frac{{z}}{\mathrm{1}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\partial{z}}{\partial{y}}=\frac{{z}}{\mathrm{1}+{y}+{y}^{\mathrm{2}} {z}^{\mathrm{2}} } \\ $$
Commented by Tawa11 last updated on 16/Oct/21
I really appreciate sir. God bless you.
$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *