Menu Close

If-xcos-ycos-2pi-3-zcos-4pi-3-then-the-value-of-xy-yz-zx-




Question Number 27840 by bmind4860 last updated on 15/Jan/18
If xcosθ=ycos(θ+((2π)/3))=zcos(θ+((4π)/3)),then  the value of xy+yz+zx.
Ifxcosθ=ycos(θ+2π3)=zcos(θ+4π3),thenthevalueofxy+yz+zx.
Answered by ajfour last updated on 15/Jan/18
let    xcos θ=ycos (θ+((2π)/3))                       =zcos (θ+((4π)/3))=r   xy+yz+zx=xyz((1/x)+(1/y)+(1/z))      =(r^3 /(cos θcos (θ+((2π)/3))cos (θ+((4π)/3))))[((cos θ)/r)+((cos (θ+((2π)/3)))/r)+((cos (θ+((4π)/3)))/r)]  and since  cos θ+cos (θ+((4π)/3))+cos (θ+((2π)/3))  =2cos (θ+((2π)/3))cos (((2π)/3))+cos (θ+((2π)/3))  =−cos (θ+((2π)/3))+cos (θ+((2π)/3))=0  so   xy+yz+zx=0 .
letxcosθ=ycos(θ+2π3)=zcos(θ+4π3)=rxy+yz+zx=xyz(1x+1y+1z)=r3cosθcos(θ+2π3)cos(θ+4π3)[cosθr+cos(θ+2π3)r+cos(θ+4π3)r]andsincecosθ+cos(θ+4π3)+cos(θ+2π3)=2cos(θ+2π3)cos(2π3)+cos(θ+2π3)=cos(θ+2π3)+cos(θ+2π3)=0soxy+yz+zx=0.
Commented by bmind4860 last updated on 15/Jan/18
superb! sir
superb!sir

Leave a Reply

Your email address will not be published. Required fields are marked *