Menu Close

if-xsin-3-ycos-3-sin-cos-and-xsin-ycos-0-prove-that-x-2-y-2-1-




Question Number 34647 by JOHNMASANJA last updated on 09/May/18
if   xsin^3 θ + ycos^3 θ=sinθcosθ  and xsinθ −ycosθ=0  prove that x^2  + y^2 =1
ifxsin3θ+ycos3θ=sinθcosθandxsinθycosθ=0provethatx2+y2=1
Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
xsinθ=ycosθ  (x/(cosθ))=(y/(sinθ))=k(assumed)  x=kcosθ ,y=ksinθ  putting in first equation    kcosθsin^3 θ+ksinθcos^3 θ=sinθcosθ  ksinθcosθ(sin^2 θ+cos^2 θ)=sinθcosθ  so k=1  hence x^2 +y^2   =cos^2 θ+sin^2 θ  =1
xsinθ=ycosθxcosθ=ysinθ=k(assumed)x=kcosθ,y=ksinθputtinginfirstequationkcosθsin3θ+ksinθcos3θ=sinθcosθksinθcosθ(sin2θ+cos2θ)=sinθcosθsok=1hencex2+y2=cos2θ+sin2θ=1
Answered by ajfour last updated on 09/May/18
xsin θ=ycos θ  ⇒   xsin θ(sin^2 θ)+ycos θ(cos^2 θ)                          = ((xsin θcos θ)/x)  or    xsin^2 θ+xcos^2 θ=cos θ  ⇒      x=cos θ     similarly           ysin^2 θ+ycos^2 θ=sin θ  ⇒      y=sin θ       hence   x^2 +y^2  = 1  .
xsinθ=ycosθxsinθ(sin2θ)+ycosθ(cos2θ)=xsinθcosθxorxsin2θ+xcos2θ=cosθx=cosθsimilarlyysin2θ+ycos2θ=sinθy=sinθhencex2+y2=1.

Leave a Reply

Your email address will not be published. Required fields are marked *