Menu Close

if-xy-y-2-zx-48-where-x-y-z-are-three-positive-real-numbers-then-find-the-maximum-possible-value-of-the-product-xyz-




Question Number 175793 by infinityaction last updated on 07/Sep/22
  if xy+y^2 +zx = 48; where x,y,z    are three positive real numbers    then find the maximum possible    value of the product (xyz)
$$\:\:\mathrm{if}\:\mathrm{xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{zx}\:=\:\mathrm{48};\:\mathrm{where}\:\mathrm{x},\mathrm{y},\mathrm{z} \\ $$$$\:\:\mathrm{are}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible} \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{product}\:\left(\mathrm{xyz}\right) \\ $$
Commented by LordKazuma last updated on 07/Sep/22
is this true y^2 ? not yx?
$$\mathrm{is}\:\mathrm{this}\:\mathrm{true}\:\mathrm{y}^{\mathrm{2}} ?\:\mathrm{not}\:\mathrm{yx}? \\ $$$$ \\ $$
Commented by infinityaction last updated on 07/Sep/22
question is right sir try to solve  this problem
$$\mathrm{question}\:\mathrm{is}\:\mathrm{right}\:\mathrm{sir}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{this}\:\mathrm{problem}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *