Menu Close

If-y-a-1-1-log-a-x-and-z-a-1-1-log-a-y-show-that-x-a-1-1-log-a-z-




Question Number 42549 by Tawa1 last updated on 27/Aug/18
If   y = a^(1/(1 − log_a x))      and        z = a^(1/(1 − log_a y))   .  show that     x = a^(1/(1 − log_a z))
Ify=a11logaxandz=a11logay.showthatx=a11logaz
Answered by math1967 last updated on 27/Aug/18
log_a y=(1/(1−log_a x))⇒log_a x=1−(1/(log_a y))  similarly  log_a y=1−(1/(log_a z))  ∴log_a x=1−(1/(1−(1/(log_a z))))=((−1)/(log_a z−1))=(1/(1−log_a z))  ∴x=a^(1/(1−log_a z))
logay=11logaxlogax=11logaysimilarlylogay=11logazlogax=1111logaz=1logaz1=11logazx=a11logaz
Commented by Tawa1 last updated on 27/Aug/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *