Menu Close

If-y-Arcsin-x-x-1-x-y-p-x-y-q-x-1-find-0-1-p-x-q-x-dx-p-q-are-two-pllynomils-




Question Number 188889 by mnjuly1970 last updated on 08/Mar/23
    If, y= (( Arcsin((√x) ))/( (√( x (1−x )))))  ⇒     y′ .p(x) + y .q(x)= 1       find ,   ∫_0 ^( 1) p(x).q(x)dx=?      p , q  are two pllynomils...
$$ \\ $$$$\:\:{If},\:{y}=\:\frac{\:{Arcsin}\left(\sqrt{{x}}\:\right)}{\:\sqrt{\:{x}\:\left(\mathrm{1}−{x}\:\right)}}\:\:\Rightarrow \\ $$$$\:\:\:{y}'\:.{p}\left({x}\right)\:+\:{y}\:.{q}\left({x}\right)=\:\mathrm{1} \\ $$$$ \\ $$$$\:\:\:{find}\:,\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {p}\left({x}\right).{q}\left({x}\right){dx}=? \\ $$$$\:\:\:\:{p}\:,\:{q}\:\:{are}\:{two}\:{pllynomils}… \\ $$$$ \\ $$
Answered by qaz last updated on 08/Mar/23
y=((arcsin (√x))/( (√(x(1−x)))))     ⇒y′=(((1/2)−((1−2x)/(2(√(x(1−x)))))arcsin (√x))/(x(1−x)))  =((1−(1−2x)y)/(2x(1−x)))  ⇒2x(1−x)y′+(1−2x)y=1  ⇒p(x)=2x(1−x)     q(x)=1−2x  ⇒∫_0 ^1 p(x)q(x)dx=∫_0 ^1 2x(1−x)(1−2x)dx=0
$${y}=\frac{\mathrm{arcsin}\:\sqrt{{x}}}{\:\sqrt{{x}\left(\mathrm{1}−{x}\right)}}\:\:\:\:\:\Rightarrow{y}'=\frac{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}−\mathrm{2}{x}}{\mathrm{2}\sqrt{{x}\left(\mathrm{1}−{x}\right)}}\mathrm{arcsin}\:\sqrt{{x}}}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}{x}\right){y}}{\mathrm{2}{x}\left(\mathrm{1}−{x}\right)} \\ $$$$\Rightarrow\mathrm{2}{x}\left(\mathrm{1}−{x}\right){y}'+\left(\mathrm{1}−\mathrm{2}{x}\right){y}=\mathrm{1} \\ $$$$\Rightarrow{p}\left({x}\right)=\mathrm{2}{x}\left(\mathrm{1}−{x}\right)\:\:\:\:\:{q}\left({x}\right)=\mathrm{1}−\mathrm{2}{x} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){q}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}{x}\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−\mathrm{2}{x}\right){dx}=\mathrm{0} \\ $$
Commented by mnjuly1970 last updated on 08/Mar/23
 mercey sir
$$\:{mercey}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *