Menu Close

If-y-f-x-ax-2-bx-c-and-at-some-x-say-x-p-0-p-ydx-y-p-y-p-y-p-p-then-find-p-




Question Number 44543 by ajfour last updated on 01/Oct/18
If  y =f(x) = ax^2 +bx+c  and  at some x, say  x= p  ∫_0 ^(  p) ydx = y(p)= y ′(p) = y ′′(p)= p ,  then find p .
Ify=f(x)=ax2+bx+candatsomex,sayx=p0pydx=y(p)=y(p)=y(p)=p,thenfindp.
Commented by MrW3 last updated on 01/Oct/18
y′(x)=2ax+b  y′′(x)=2a  2a=p⇒a=(p/2)  2×(p/2)×p+b=p⇒b=p(1−p)  (p/2)×p^2 +p(1−p)×p+c=p  ⇒c=p−p^2 +(p^3 /2)  ∫_0 ^p ydx=(a/3)×p^3 +(b/2)×p^2 +cp=p  (a/3)×p^2 +(b/2)×p+c=1  (p/6)×p^2 +((p(1−p))/2)×p+p−p^2 +(p^3 /2)=1  (p^3 /6)+(p^2 /2)−(p^3 /2)+p−p^2 +(p^3 /2)=1  (p^3 /6)−(p^2 /2)+p=1  p^3 −3p^2 +6p−6=0  ⇒p≈1.6
y(x)=2ax+by(x)=2a2a=pa=p22×p2×p+b=pb=p(1p)p2×p2+p(1p)×p+c=pc=pp2+p320pydx=a3×p3+b2×p2+cp=pa3×p2+b2×p+c=1p6×p2+p(1p)2×p+pp2+p32=1p36+p22p32+pp2+p32=1p36p22+p=1p33p2+6p6=0p1.6
Commented by MrW3 last updated on 01/Oct/18
thanks for checking sir!
thanksforcheckingsir!
Commented by ajfour last updated on 01/Oct/18
yes sir, it is correct there, i dint  notice properly, please pardon.  Thank you.
yessir,itiscorrectthere,idintnoticeproperly,pleasepardon.Thankyou.
Answered by ajfour last updated on 01/Oct/18
p=2a=2ap+b=ap^2 +bp+c       = ((ap^3 )/3)+((bp^2 )/2)+cp  ⇒  ap^2 +bp+c = p    ..(i)  ⇒ ((ap^2 )/3)+((bp)/2)+c = 1     ..(ii)  (i)−(ii) gives  ((2ap^2 )/3)+((bp)/2) = p−1  , and we already  have    2ap+b = p  with 2a=p ,   b=p−p^2   So    (p^3 /3)+(p/2)(p−p^2 )=p−1  ⇒  (p^3 /6)−(p^2 /2)+p−1 = 0  or   p^3 −3p^2 +6p−6 =0  let p = t+1  ⇒  t^3 +3t+1−6t−3+6t = 0  ⇒  t^3 +3t−2 =0  let  t=u+v  ⇒  u^3 +v^3 +3(u+v)(uv+1)= 2  further let uv=−1  then   u^3 +v^3  = 2  u^3 , v^3  are roots of quadratic       z^2 −2z−1= 0     z = 1±(√2)    t= u+v = ((√2)+1)^(1/3) −((√2)−1)^(1/3)     p = t+1 ≈ 1.59607164
p=2a=2ap+b=ap2+bp+c=ap33+bp22+cpap2+bp+c=p..(i)ap23+bp2+c=1..(ii)(i)(ii)gives2ap23+bp2=p1,andwealreadyhave2ap+b=pwith2a=p,b=pp2Sop33+p2(pp2)=p1p36p22+p1=0orp33p2+6p6=0letp=t+1t3+3t+16t3+6t=0t3+3t2=0lett=u+vu3+v3+3(u+v)(uv+1)=2furtherletuv=1thenu3+v3=2u3,v3arerootsofquadraticz22z1=0z=1±2t=u+v=(2+1)1/3(21)1/3p=t+11.59607164
Commented by MrW3 last updated on 01/Oct/18
I knew you′ll give the exact solution,  thanks for the perfect result!
Iknewyoullgivetheexactsolution,thanksfortheperfectresult!
Commented by ajfour last updated on 01/Oct/18
thanks mrW Sir (for Cardano′s).
thanksmrWSir(forCardanos).

Leave a Reply

Your email address will not be published. Required fields are marked *