Question Number 44543 by ajfour last updated on 01/Oct/18
$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$
Commented by MrW3 last updated on 01/Oct/18
$${y}'\left({x}\right)=\mathrm{2}{ax}+{b} \\ $$$${y}''\left({x}\right)=\mathrm{2}{a} \\ $$$$\mathrm{2}{a}={p}\Rightarrow{a}=\frac{{p}}{\mathrm{2}} \\ $$$$\mathrm{2}×\frac{{p}}{\mathrm{2}}×{p}+{b}={p}\Rightarrow{b}={p}\left(\mathrm{1}−{p}\right) \\ $$$$\frac{{p}}{\mathrm{2}}×{p}^{\mathrm{2}} +{p}\left(\mathrm{1}−{p}\right)×{p}+{c}={p} \\ $$$$\Rightarrow{c}={p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{{p}} {ydx}=\frac{{a}}{\mathrm{3}}×{p}^{\mathrm{3}} +\frac{{b}}{\mathrm{2}}×{p}^{\mathrm{2}} +{cp}={p} \\ $$$$\frac{{a}}{\mathrm{3}}×{p}^{\mathrm{2}} +\frac{{b}}{\mathrm{2}}×{p}+{c}=\mathrm{1} \\ $$$$\frac{{p}}{\mathrm{6}}×{p}^{\mathrm{2}} +\frac{{p}\left(\mathrm{1}−{p}\right)}{\mathrm{2}}×{p}+{p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\frac{{p}^{\mathrm{3}} }{\mathrm{6}}+\frac{{p}^{\mathrm{2}} }{\mathrm{2}}−\frac{{p}^{\mathrm{3}} }{\mathrm{2}}+{p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\frac{{p}^{\mathrm{3}} }{\mathrm{6}}−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}+{p}=\mathrm{1} \\ $$$${p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{6}{p}−\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{6} \\ $$
Commented by MrW3 last updated on 01/Oct/18
$${thanks}\:{for}\:{checking}\:{sir}! \\ $$
Commented by ajfour last updated on 01/Oct/18
$${yes}\:{sir},\:{it}\:{is}\:{correct}\:{there},\:{i}\:{dint} \\ $$$${notice}\:{properly},\:{please}\:{pardon}. \\ $$$${Thank}\:{you}. \\ $$
Answered by ajfour last updated on 01/Oct/18
$${p}=\mathrm{2}{a}=\mathrm{2}{ap}+{b}={ap}^{\mathrm{2}} +{bp}+{c} \\ $$$$\:\:\:\:\:=\:\frac{{ap}^{\mathrm{3}} }{\mathrm{3}}+\frac{{bp}^{\mathrm{2}} }{\mathrm{2}}+{cp} \\ $$$$\Rightarrow\:\:{ap}^{\mathrm{2}} +{bp}+{c}\:=\:{p}\:\:\:\:..\left({i}\right) \\ $$$$\Rightarrow\:\frac{{ap}^{\mathrm{2}} }{\mathrm{3}}+\frac{{bp}}{\mathrm{2}}+{c}\:=\:\mathrm{1}\:\:\:\:\:..\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\:{gives} \\ $$$$\frac{\mathrm{2}{ap}^{\mathrm{2}} }{\mathrm{3}}+\frac{{bp}}{\mathrm{2}}\:=\:{p}−\mathrm{1}\:\:,\:{and}\:{we}\:{already} \\ $$$${have}\:\:\:\:\mathrm{2}{ap}+{b}\:=\:{p} \\ $$$${with}\:\mathrm{2}{a}={p}\:,\:\:\:{b}={p}−{p}^{\mathrm{2}} \\ $$$${So}\:\:\:\:\frac{{p}^{\mathrm{3}} }{\mathrm{3}}+\frac{{p}}{\mathrm{2}}\left({p}−{p}^{\mathrm{2}} \right)={p}−\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\boldsymbol{{p}}^{\mathrm{3}} }{\mathrm{6}}−\frac{\boldsymbol{{p}}^{\mathrm{2}} }{\mathrm{2}}+\boldsymbol{{p}}−\mathrm{1}\:=\:\mathrm{0} \\ $$$${or}\:\:\:{p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{6}{p}−\mathrm{6}\:=\mathrm{0} \\ $$$${let}\:{p}\:=\:{t}+\mathrm{1} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} +\mathrm{3}{t}+\mathrm{1}−\mathrm{6}{t}−\mathrm{3}+\mathrm{6}{t}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} +\mathrm{3}{t}−\mathrm{2}\:=\mathrm{0} \\ $$$${let}\:\:{t}={u}+{v} \\ $$$$\Rightarrow\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}\left({u}+{v}\right)\left({uv}+\mathrm{1}\right)=\:\mathrm{2} \\ $$$${further}\:{let}\:{uv}=−\mathrm{1} \\ $$$${then}\:\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} \:=\:\mathrm{2} \\ $$$${u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of}\:{quadratic} \\ $$$$\:\:\:\:\:\boldsymbol{{z}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{z}}−\mathrm{1}=\:\mathrm{0} \\ $$$$\:\:\:\boldsymbol{{z}}\:=\:\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\:\:{t}=\:{u}+{v}\:=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} −\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\boldsymbol{{p}}\:=\:{t}+\mathrm{1}\:\approx\:\mathrm{1}.\mathrm{59607164} \\ $$
Commented by MrW3 last updated on 01/Oct/18
$${I}\:{knew}\:{you}'{ll}\:{give}\:{the}\:{exact}\:{solution}, \\ $$$${thanks}\:{for}\:{the}\:{perfect}\:{result}! \\ $$
Commented by ajfour last updated on 01/Oct/18
$${thanks}\:{mrW}\:{Sir}\:\left({for}\:{Cardano}'{s}\right). \\ $$