Question Number 95014 by I want to learn more last updated on 22/May/20
$$\boldsymbol{\mathrm{If}}\:\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}\:\:+\:\:\mathrm{1}} \:\:−\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}} \:\:\:=\:\:\:\mathrm{6},\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}}\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\mathrm{0}} \:\:=\:\:\:\mathrm{7} \\ $$$$\boldsymbol{\mathrm{Find}}\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}} \\ $$
Commented by prakash jain last updated on 22/May/20
$$\mathrm{This}\:\mathrm{is}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{progression}: \\ $$$${y}_{\mathrm{0}} =\mathrm{7} \\ $$$${y}_{{n}+\mathrm{1}} ={y}_{{n}} +\mathrm{6} \\ $$$$\mathrm{firzt}\:\mathrm{term}\:\mathrm{7} \\ $$$$\mathrm{common}\:\mathrm{difference}=\mathrm{6} \\ $$$${y}_{{n}} =\mathrm{7}+{n}\mathrm{6} \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\mathrm{Sir},\:\mathrm{with}\:\:\mathrm{y}_{\mathrm{n}} \:\:=\:\:\mathrm{a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d},\:\:\mathrm{i}\:\mathrm{did}\:\mathrm{not}\:\mathrm{get}\:\mathrm{it}. \\ $$$$\:\:\mathrm{y}_{\mathrm{n}} \:\:=\:\:\mathrm{7}\:\:+\:\:\left(\mathrm{n}\:−\:\mathrm{1}\right).\mathrm{6}\:\:=\:\:\mathrm{7}\:+\:\mathrm{6n}\:−\:\mathrm{6}\:\:=\:\:\mathrm{6n}\:+\:\mathrm{1} \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\mathrm{And}\:\mathrm{sir} \\ $$$$\mathrm{for}\:\:\:\:\:\mathrm{y}_{\mathrm{n}\:−\:\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{n}\:−\:\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{n}} \:\:=\:\:\mathrm{0} \\ $$$$\mathrm{auxilliary}\:\mathrm{equation}\:\mathrm{is}:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{1}\:\:=\:\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{of} \\ $$$$\:\:\:\:\mathrm{y}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:+\:\:\mathrm{y}_{\mathrm{n}\:\:+\:\:\mathrm{3}} \:\:+\:\:\mathrm{y}_{\mathrm{n}\:\:−\:\mathrm{1}} \:\:+\:\:\mathrm{y}_{\mathrm{n}} \:\:=\:\:\mathrm{0} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{auxilliary}\:\mathrm{equation} \\ $$
Commented by mr W last updated on 22/May/20
$$“{you}\:{want}\:{to}\:{learn}\:{more}''\:{sir}: \\ $$$${try}\:{to}\:{learn}\:{things}\:{one}\:{after}\:{an}\:{other}! \\ $$$${if}\:{you}\:{are}\:{still}\:{at}\:{the}\:{level}\:{for}\:{AP}, \\ $$$${forget}\:{at}\:{first}\:“{auxilliary}\:{equation}''. \\ $$$${back}\:{to}\:{your}\:{original}\:{question}: \\ $$$${you}\:{should}\:{make}\:{clear}\:{what}\:{you}\:{mean} \\ $$$${with}\:“{n}''.\:{if}\:{you}\:{say}\:{y}_{{n}} =\mathrm{6}{n}+\mathrm{1},\:{but} \\ $$$${you}\:{gave}\:{your}\:{first}\:{term}\:{y}_{\mathrm{0}} ,\:{then} \\ $$$${you}\:{are}\:{wrong},\:{since}\:{y}_{\mathrm{0}} =\mathrm{6}×\mathrm{0}+\mathrm{1}=\mathrm{1}\neq\mathrm{7}. \\ $$$${correct}\:{is}\:{y}_{{n}} =\mathrm{6}{n}+\mathrm{7}.\:{so}\:{never}\:{just} \\ $$$${learn}\:{a}\:{formula},\:{but}\:{learn}\:{what}\:{is} \\ $$$${behind}\:{it}! \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\mathrm{But}\:\mathrm{i}\:\mathrm{got}\:\mathrm{the}\:\mathrm{question}\:\mathrm{from}\:\mathrm{the}\:\mathrm{auxilliary}\:\mathrm{equations} \\ $$
Commented by prakash jain last updated on 22/May/20
$$\mathrm{You}\:\mathrm{may}\:\mathrm{want}\:\mathrm{to}\:\mathrm{just}\:\mathrm{do}\:\mathrm{a}\:\mathrm{internet} \\ $$$$\mathrm{search}\:\mathrm{on}\:“\mathrm{recurrence}\:\mathrm{relation}''. \\ $$$$\mathrm{You}\:\mathrm{will}\:\mathrm{find}\:\mathrm{some}\:\mathrm{general}\:\mathrm{techinques} \\ $$$$\mathrm{on}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{recurrence}\:\mathrm{relation}. \\ $$$$\mathrm{Sometime}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{do}\:\mathrm{a}\:\mathrm{variable} \\ $$$$\mathrm{subtituion}\:\mathrm{to}\:\mathrm{convert}\:\mathrm{to}\:\mathrm{linear} \\ $$$$\mathrm{recurrence}\:\left(\mathrm{ex}.\:\mathrm{Q93173}\right) \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\mathrm{I}\:\mathrm{can}\:\mathrm{express}\:\mathrm{negative}\:\mathrm{base}\:\mathrm{like} \\ $$$$\:\:\:\mathrm{y}_{\mathrm{n}\:−\:\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{n}\:−\:\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{cannot}\:\mathrm{find}\:\mathrm{aucilliary}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\mathrm{y}_{\mathrm{n}\:+\:\mathrm{2}} \:\:+\:\:\mathrm{y}_{\mathrm{n}\:\:+\:\:\mathrm{3}} \:+\:…\:\mathrm{for}\:\mathrm{positive}\:\mathrm{base}\:\mathrm{and}\:\mathrm{negative}\:\mathrm{together}. \\ $$
Commented by prakash jain last updated on 22/May/20
$$\mathrm{What}\:\mathrm{matter}\:\mathrm{is}\:\mathrm{a}\:\mathrm{difference}\:\mathrm{say} \\ $$$$\mathrm{for}\:\mathrm{example} \\ $$$${y}_{{n}+\mathrm{2}} =\mathrm{5}{y}_{{n}} +\mathrm{3}{y}_{{n}+\mathrm{1}} \\ $$$$\mathrm{Subtitue}\:{n}={n}−\mathrm{2} \\ $$$${y}_{{n}} =\mathrm{5}{y}_{{n}−\mathrm{2}} +\mathrm{3}{y}_{{n}−\mathrm{1}} \\ $$
Commented by I want to learn more last updated on 22/May/20
$$\:\mathrm{I}\:\mathrm{appreciate}.\:\mathrm{now}\:\mathrm{i}\:\mathrm{have}\:\mathrm{an}\:\mathrm{idea}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$