Menu Close

if-y-sin-1-2x-1-x-2-where-x-1-2-1-2-then-find-dy-dx-




Question Number 190660 by vishal1234 last updated on 08/Apr/23
if y = sin^(−1) (2x(√(1−x^2 ))) where x∈[−(1/( (√2))), (1/( (√2)))], then find (dy/dx).
ify=sin1(2x1x2)wherex[12,12],thenfinddydx.
Answered by BaliramKumar last updated on 08/Apr/23
let, x = sinθ ⇒ θ = sin^(−1) x  y = sin^(−1) (2sinθ(√(1−sin^2 θ)))  y = sin^(−1) (2sinθ(√(cos^2 θ)))  y = sin^(−1) (2sinθ∙cosθ)  y = sin^(−1) (sin2θ)  y = 2θ = 2sin^(−1) x  (dy/dx) = 2((1/( (√(1−x^2 ))))) = (2/( (√(1−x^2 ))))
let,x=sinθθ=sin1xy=sin1(2sinθ1sin2θ)y=sin1(2sinθcos2θ)y=sin1(2sinθcosθ)y=sin1(sin2θ)y=2θ=2sin1xdydx=2(11x2)=21x2
Commented by vishal1234 last updated on 14/Apr/23
what will happen,? if we take x = cosθ?
whatwillhappen,?ifwetakex=cosθ?
Answered by horsebrand11 last updated on 09/Apr/23
 y=sin^(−1) (2x(√(1−x^2 )))   2x(√(1−x^2 )) = sin y   2(√(1−x^2 ))+2x(((−2x)/(2(√(1−x^2 )))))= cos y .(dy/dx)   2(√(1−x^2 ))−((2x^2 )/( (√(1−x^2 )))) = cos y. (dy/dx)   ((2−4x^2 )/( (√(1−x^2 )))) .(1/( (√(1−4x^2 (1−x^2 ))))) = (dy/dx)   (dy/dx) = ((2−4x^2 )/( (√(1−x^2 )) (√(4x^4 −4x^2 +1))))    (dy/dx) = ((2−4x^2 )/((2x−1)(√(1−x^2 ))))
y=sin1(2x1x2)2x1x2=siny21x2+2x(2x21x2)=cosy.dydx21x22x21x2=cosy.dydx24x21x2.114x2(1x2)=dydxdydx=24x21x24x44x2+1dydx=24x2(2x1)1x2
Commented by som(math1967) last updated on 09/Apr/23
4x^4 −4x^2 +1=(2x^2 −1)^2  or(1−2x^2 )^2
4x44x2+1=(2x21)2or(12x2)2

Leave a Reply

Your email address will not be published. Required fields are marked *