Menu Close

if-y-sin-1-x-2-cos-1-x-2-find-dy-dx-




Question Number 28304 by NECx last updated on 23/Jan/18
if y=(sin^(−1) x)^2 +(cos^(−1) x)^2     find dy/dx
$${if}\:{y}=\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} +\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${find}\:{dy}/{dx} \\ $$
Answered by ajfour last updated on 23/Jan/18
let   sin^(−1) x=θ  , ⇒ (dθ/dx)=(1/( (√(1−x^2 ))))  y=θ^( 2) +((π/2)−θ)^2   (dy/dx)=[2θ−2((π/2)−θ)](dθ/dx)   (dy/dx) =−(π/( (√(1−x^2 )))) .
$${let}\:\:\:\mathrm{sin}^{−\mathrm{1}} {x}=\theta\:\:,\:\Rightarrow\:\frac{{d}\theta}{{dx}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${y}=\theta^{\:\mathrm{2}} +\left(\frac{\pi}{\mathrm{2}}−\theta\right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\left[\mathrm{2}\theta−\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−\theta\right)\right]\frac{{d}\theta}{{dx}} \\ $$$$\:\frac{{dy}}{{dx}}\:=−\frac{\pi}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$
Commented by NECx last updated on 24/Jan/18
I took the following steps but I  dont know if my analysis is wrong  please check and make the  possible corrections    y=(sin^(−1) x)^2 +(cos^(−1) x)^2   let sin^(−1) x=a=cos^(−1) ((√(1−x^2 )))    ∴y=(cos^(−1) ((√(1−x^2 ))))^2 +(cos^(−1) x)^2   (dy/dx)=((−2cos^(−1) ((√(1−x^2 ))))/( (√(1−x^2 )))) + (((−2cos^(−1) x))/( (√(1−x^2 ))))    (dy/dx)=((−2)/( (√(1−x^2 ))))(cos^(−1) (√(1−x^2  ))+ cos^(−1) x)    dy/dx=((−2)/( (√(1−x^2 ))))(0)    then dy/dx=0
$${I}\:{took}\:{the}\:{following}\:{steps}\:{but}\:{I} \\ $$$${dont}\:{know}\:{if}\:{my}\:{analysis}\:{is}\:{wrong} \\ $$$${please}\:{check}\:{and}\:{make}\:{the} \\ $$$${possible}\:{corrections} \\ $$$$ \\ $$$${y}=\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} +\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} \\ $$$${let}\:\mathrm{sin}^{−\mathrm{1}} {x}={a}=\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right) \\ $$$$ \\ $$$$\therefore{y}=\left(\mathrm{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)\right)^{\mathrm{2}} +\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{2cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:+\:\frac{\left(−\mathrm{2cos}^{−\mathrm{1}} {x}\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\mathrm{cos}^{−\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}+\:\mathrm{cos}^{−\mathrm{1}} {x}\right) \\ $$$$ \\ $$$${dy}/{dx}=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\mathrm{0}\right) \\ $$$$ \\ $$$${then}\:{dy}/{dx}=\mathrm{0} \\ $$
Commented by mrW2 last updated on 24/Jan/18
cos^(−1) (√(1−x^2  ))+ cos^(−1) x  =sin^(−1) x+ cos^(−1) x  =(π/2)  ≠0
$$\mathrm{cos}^{−\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}+\:\mathrm{cos}^{−\mathrm{1}} {x} \\ $$$$=\mathrm{sin}^{−\mathrm{1}} {x}+\:\mathrm{cos}^{−\mathrm{1}} {x} \\ $$$$=\frac{\pi}{\mathrm{2}} \\ $$$$\neq\mathrm{0} \\ $$
Commented by NECx last updated on 24/Jan/18
oh Thanks
$${oh}\:{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *