If-y-sin-x-x-0-to-x-2pi-is-revolved-about-the-x-axis-find-the-surface-of-the-solid-of-revolution- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 87298 by ajfour last updated on 03/Apr/20 Ify=sinx,x=0tox=2πisrevolvedaboutthex−axis,findthesurfaceofthesolidofrevolution. Answered by ajfour last updated on 04/Apr/20 A=2∫0π(2πy)dsds=dx×secθtanθ=dydx=cosxA=4π∫0π(sinx)(1+cos2xdx)letcosx=t⇒−sinxdx=dtA=4π∫−111+t2dt=8π∫011+t2dt=8π{t21+t2+12ln∣t+1+t2∣}∣01=8π[12+12ln(1+2)]A=4π[2+ln(1+2)]. Commented by mr W last updated on 04/Apr/20 youarerightsir!thanks! Commented by ajfour last updated on 04/Apr/20 YoumightlikeQ.87296Sir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-152834Next Next post: Question-87301 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.