Menu Close

If-y-sin-x-x-0-to-x-2pi-is-revolved-about-the-x-axis-find-the-surface-of-the-solid-of-revolution-




Question Number 87298 by ajfour last updated on 03/Apr/20
If y=sin x ,  x=0 to x=2π is  revolved about the x-axis, find  the surface of the solid of  revolution.
Ify=sinx,x=0tox=2πisrevolvedaboutthexaxis,findthesurfaceofthesolidofrevolution.
Answered by ajfour last updated on 04/Apr/20
A=2∫_0 ^( π) (2πy)ds    ds=dx×sec θ     tan θ=(dy/dx) = cos x  A=4π∫_0 ^( π) (sin x)((√(1+cos^2 x)) dx)     let  cos x=t  ⇒  −sin xdx=dt   A=4π∫_(−1) ^(  1) (√(1+t^2 )) dt      =8π∫_0 ^( 1) (√(1+t^2 )) dt     = 8π{(t/2)(√(1+t^2 ))+(1/2)ln ∣t+(√(1+t^2 ))∣ }∣_0 ^1     = 8π[(1/( (√2)))+(1/2)ln (1+(√2))]    A=4𝛑[(√2)+ln (1+(√2))].
A=20π(2πy)dsds=dx×secθtanθ=dydx=cosxA=4π0π(sinx)(1+cos2xdx)letcosx=tsinxdx=dtA=4π111+t2dt=8π011+t2dt=8π{t21+t2+12lnt+1+t2}01=8π[12+12ln(1+2)]A=4π[2+ln(1+2)].
Commented by mr W last updated on 04/Apr/20
you are right sir! thanks!
youarerightsir!thanks!
Commented by ajfour last updated on 04/Apr/20
You might like Q.87296 Sir.
YoumightlikeQ.87296Sir.

Leave a Reply

Your email address will not be published. Required fields are marked *