Menu Close

if-y-sinx-sinx-sinx-find-dy-dx-




Question Number 25567 by rita1608 last updated on 11/Dec/17
if y( sinx)^((sinx)^((sinx).^.^.^(.∞)   ) )   find dy/dx.
ify(sinx)(sinx)(sinx)....finddy/dx.
Commented by prakash jain last updated on 11/Dec/17
 y=( sinx)^((sinx)^((sinx).^.^.^(.∞)   ) ) ?
y=(sinx)(sinx)(sinx)....?
Answered by prakash jain last updated on 11/Dec/17
y=( sinx)^((sinx)^((sinx).^.^.^(.∞)   ) )   y=(sin x)^y   ln y=yln (sin x)  (1/y)∙(dy/dx)=y((cos x)/(sin x))+(ln sin x)(dy/dx)  ((1/y)−ln (sin x))(dy/dx)=((ycos x)/(sin x))  (dy/dx)=((y^2 cos x)/(sin x))×(1/(1−ysin x))
y=(sinx)(sinx)(sinx)....y=(sinx)ylny=yln(sinx)1ydydx=ycosxsinx+(lnsinx)dydx(1yln(sinx))dydx=ycosxsinxdydx=y2cosxsinx×11ysinx
Commented by rita1608 last updated on 11/Dec/17
thank u sir
thankusir
Commented by mrW1 last updated on 11/Dec/17
A try to solve y:  y=(sin x)^y   ⇒y=e^(yln (sin x))   ⇒y×e^(−yln (sin x)) =1  ⇒−yln (sin x)×e^(−yln (sin x)) =−ln (sin x)  ⇒−yln (sin x)=W(−ln (sin x))  ⇒y=−((W(−ln (sin x)))/(ln (sin x)))    in general:  f(x)^(f(x)^(f(x)^(...) ) ) =−((W(−ln f(x)))/(ln f(x)))  f(x)>0  ln f(x)<(1/e)  ⇒0<f(x)<e^(1/e) ≈1.444
Atrytosolvey:y=(sinx)yy=eyln(sinx)y×eyln(sinx)=1yln(sinx)×eyln(sinx)=ln(sinx)yln(sinx)=W(ln(sinx))y=W(ln(sinx))ln(sinx)ingeneral:f(x)f(x)f(x)=W(lnf(x))lnf(x)f(x)>0lnf(x)<1e0<f(x)<e1e1.444
Answered by ibraheem160 last updated on 11/Dec/17

Leave a Reply

Your email address will not be published. Required fields are marked *