Menu Close

If-y-x-1-3-Find-dy-dx-from-the-first-principle-




Question Number 13068 by tawa tawa last updated on 13/May/17
If   y =  (x)^(1/3)      Find  (dy/dx)  from the first principle
Ify=x3Finddydxfromthefirstprinciple
Answered by ajfour last updated on 13/May/17
(dy/dx)=lim_(h→0) (((x+h)^(1/3) −x^(1/3) )/h)      =lim_(h→0) ((x^(1/3) {(1+(h/x))^(1/3) −1})/h)  as h≪x  we have (1+(h/x))^n =1+((nh)/x)  so  (dy/dx)=lim_(h→0) ((x^(1/3) {1+(h/(3x))−1})/h)  ⇒(dy/dx)=(x^(1/3) )lim_(h→0) (((h/3x))/h)            = x^(1/3) ((1/(3x)))           = (1/(3x^(2/3) )) .
dydx=limh0(x+h)1/3x1/3h=limh0x1/3{(1+hx)1/31}hashxwehave(1+hx)n=1+nhxsodydx=limh0x1/3{1+h3x1}hdydx=(x1/3)limh0(h/3x)h=x1/3(13x)=13x2/3.
Commented by tawa tawa last updated on 13/May/17
God bless you sir
Godblessyousir
Commented by Nayon last updated on 23/May/17
why(1+(h/x))^n =1+((nh)/x)    ?
why(1+hx)n=1+nhx?
Answered by mrW1 last updated on 13/May/17
Generally for y=f(x)=x^a  (a≠0) we have  f(x+Δx)=f(x+h)=(x+h)^a   ((Δy)/(Δx))=((f(x+Δx)−f(x))/(Δx))=(((x+h)^a −x^a )/h)=x^a (((1+(h/x))^a −1)/h)  (dy/dx)=lim_(h→0)  ((Δy)/(Δx))=x^a ×lim_(h→0) (((1+(h/x))^a −1)/h)  (1+(h/x))^a =1+a((h/x))+((a(a−1))/(2!))((h/x))^2 +((a(a−1)(a−2))/(3!))((h/x))^3 +∙∙∙  (((1+(h/x))^a −1)/h)=(a/x)+((a(a−1)h)/(2!x^2 ))+((a(a−1)(a−2)h^2 )/(3!x^3 ))+∙∙∙  lim_(h→0) (((1+(h/x))^a −1)/h)=(a/x)+0+0+0+∙∙∙=(a/x)  ⇒(dy/dx)=x^a ×(a/x)=ax^(a−1)   for a=(1/3) we get  (dy/dx)=(1/3)x^(−(2/3))
Generallyfory=f(x)=xa(a0)wehavef(x+Δx)=f(x+h)=(x+h)aΔyΔx=f(x+Δx)f(x)Δx=(x+h)axah=xa(1+hx)a1hdydx=limh0ΔyΔx=xa×limh0(1+hx)a1h(1+hx)a=1+a(hx)+a(a1)2!(hx)2+a(a1)(a2)3!(hx)3+(1+hx)a1h=ax+a(a1)h2!x2+a(a1)(a2)h23!x3+limh0(1+hx)a1h=ax+0+0+0+=axdydx=xa×ax=axa1fora=13wegetdydx=13x23
Commented by ajfour last updated on 13/May/17
too good !
toogood!
Commented by tawa tawa last updated on 13/May/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *