Question Number 13068 by tawa tawa last updated on 13/May/17
$$\mathrm{If}\:\:\:\mathrm{y}\:=\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\:\:\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle} \\ $$
Answered by ajfour last updated on 13/May/17
$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+{h}\right)^{\mathrm{1}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} }{{h}} \\ $$$$\:\:\:\:=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{1}/\mathrm{3}} \left\{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{\mathrm{1}/\mathrm{3}} −\mathrm{1}\right\}}{{h}} \\ $$$${as}\:{h}\ll{x}\:\:{we}\:{have}\:\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{n}} =\mathrm{1}+\frac{{nh}}{{x}} \\ $$$${so}\:\:\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{1}/\mathrm{3}} \left\{\mathrm{1}+\frac{{h}}{\mathrm{3}{x}}−\mathrm{1}\right\}}{{h}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\left({x}^{\mathrm{1}/\mathrm{3}} \right)\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({h}/\mathrm{3}{x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:{x}^{\mathrm{1}/\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{3}{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}/\mathrm{3}} }\:. \\ $$
Commented by tawa tawa last updated on 13/May/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Nayon last updated on 23/May/17
$${why}\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{n}} =\mathrm{1}+\frac{{nh}}{{x}}\:\:\:\:? \\ $$
Answered by mrW1 last updated on 13/May/17
$${Generally}\:{for}\:{y}={f}\left({x}\right)={x}^{{a}} \:\left({a}\neq\mathrm{0}\right)\:{we}\:{have} \\ $$$${f}\left({x}+\Delta{x}\right)={f}\left({x}+{h}\right)=\left({x}+{h}\right)^{{a}} \\ $$$$\frac{\Delta{y}}{\Delta{x}}=\frac{{f}\left({x}+\Delta{x}\right)−{f}\left({x}\right)}{\Delta{x}}=\frac{\left({x}+{h}\right)^{{a}} −{x}^{{a}} }{{h}}={x}^{{a}} \frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}} \\ $$$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\Delta{y}}{\Delta{x}}={x}^{{a}} ×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}} \\ $$$$\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} =\mathrm{1}+{a}\left(\frac{{h}}{{x}}\right)+\frac{{a}\left({a}−\mathrm{1}\right)}{\mathrm{2}!}\left(\frac{{h}}{{x}}\right)^{\mathrm{2}} +\frac{{a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right)}{\mathrm{3}!}\left(\frac{{h}}{{x}}\right)^{\mathrm{3}} +\centerdot\centerdot\centerdot \\ $$$$\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}}=\frac{{a}}{{x}}+\frac{{a}\left({a}−\mathrm{1}\right){h}}{\mathrm{2}!{x}^{\mathrm{2}} }+\frac{{a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right){h}^{\mathrm{2}} }{\mathrm{3}!{x}^{\mathrm{3}} }+\centerdot\centerdot\centerdot \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}}=\frac{{a}}{{x}}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\centerdot\centerdot\centerdot=\frac{{a}}{{x}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={x}^{{a}} ×\frac{{a}}{{x}}={ax}^{{a}−\mathrm{1}} \\ $$$${for}\:{a}=\frac{\mathrm{1}}{\mathrm{3}}\:{we}\:{get} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$
Commented by ajfour last updated on 13/May/17
$${too}\:{good}\:!\: \\ $$
Commented by tawa tawa last updated on 13/May/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$