Menu Close

if-y-x-1-x-1-x-1-x-find-y-




Question Number 162809 by mkam last updated on 01/Jan/22
if y = x + (1/(x+(1/(x+(1/x)._._._._.    ))))  find y^′
$${if}\:{y}\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}._{._{._{._{.} } } } }}\:\:{find}\:{y}^{'} \\ $$
Answered by mindispower last updated on 01/Jan/22
y=x+(1/y)  ⇒y′=−((y′)/y^2 )+1  y′=(y^2 /(y^2 +1))
$${y}={x}+\frac{\mathrm{1}}{{y}} \\ $$$$\Rightarrow{y}'=−\frac{{y}'}{{y}^{\mathrm{2}} }+\mathrm{1} \\ $$$${y}'=\frac{{y}^{\mathrm{2}} }{{y}^{\mathrm{2}} +\mathrm{1}} \\ $$
Commented by mkam last updated on 01/Jan/22
put y^′ = (y/(2y−x))
$${put}\:{y}^{'} =\:\frac{{y}}{\mathrm{2}{y}−{x}} \\ $$
Answered by MJS_new last updated on 01/Jan/22
y=x+(1/y) ⇒ y=((x+(√(x^2 +4)))/2) ⇒ y′=(1/2)+(x/(2(√(x^2 +4))))
$${y}={x}+\frac{\mathrm{1}}{{y}}\:\Rightarrow\:{y}=\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\Rightarrow\:{y}'=\frac{\mathrm{1}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *