Menu Close

if-y-x-2-x-1-find-dy-dx-from-first-principle-




Question Number 117863 by aurpeyz last updated on 14/Oct/20
if y=((x+2)/( (√(x+1)))) find (dy/dx) from first  principle.
ify=x+2x+1finddydxfromfirstprinciple.
Answered by bemath last updated on 14/Oct/20
y=((x+1+1)/( (√(x+1)))) = (√(x+1)) +(1/( (√(x+1))))  (dy/dx) = lim_(h→0)  (((√(x+h+1)) + (1/( (√(x+h+1))))−(√(x+1)) −(1/( (√(x+1)))))/h)  =lim_(h→0)  (h/(h((√(x+h+1))+(√(x+1))))) +lim_(h→0)  (((1/( (√(x+h+1))))−(1/( (√(x+1)))))/h)  = (1/(2(√(x+1)))) + lim_(h→0)  (((√(x+1))−(√(x+h+1)))/(h((√((x+1)(x+h+1)))))  =(1/(2(√(x+1)))) + (1/(x+1)) .lim_(x→0)  ((−h)/(h((√(x+h+1))+(√(x+1)))))  = (1/(2(√(x+1)))) −(1/(x+1)).(1/(2(√(x+1))))  =(1/(2(√(x+1)))) [1−(1/(x+1)) ] = (x/(2(x+1)^(3/2) ))  or (x/(2(x+1)(√(x+1))))
y=x+1+1x+1=x+1+1x+1dydx=limh0x+h+1+1x+h+1x+11x+1h=limh0hh(x+h+1+x+1)+limh01x+h+11x+1h=12x+1+limh0x+1x+h+1h((x+1)(x+h+1)=12x+1+1x+1.limx0hh(x+h+1+x+1)=12x+11x+1.12x+1=12x+1[11x+1]=x2(x+1)32orx2(x+1)x+1

Leave a Reply

Your email address will not be published. Required fields are marked *