Menu Close

If-y-x-2-x-2-x-2-find-y-y-dx-




Question Number 18233 by Joel577 last updated on 17/Jul/17
If y = (√(x^2  + (√(x^2  + (√(x^2  + (√(...))))))))  find ∫(y + (√y)) dx
$$\mathrm{If}\:{y}\:=\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{…}}}} \\ $$$$\mathrm{find}\:\int\left({y}\:+\:\sqrt{{y}}\right)\:{dx} \\ $$
Commented by alex041103 last updated on 17/Jul/17
did you mean y=(√(x^2 +(√(x^2 +(√(x^2 + ...))))))
$${did}\:{you}\:{mean}\:{y}=\sqrt{{x}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{2}} +\:…}}} \\ $$
Commented by Joel577 last updated on 17/Jul/17
oh yes. thank you. I have corrected it
$${oh}\:{yes}.\:{thank}\:{you}.\:{I}\:{have}\:{corrected}\:{it} \\ $$
Answered by mrW1 last updated on 17/Jul/17
y = (√(x^2  + (√(x^2  + (√(x^2  + (√(...))))))))  y^2  =x^2 + (√(x^2  + (√(x^2  + (√(x^2  + (√(...))))))))=x^2 +y  y^2 −y−x^2 =0  y=((1+(√(1+4x^2 )))/2)=(1/2)+(√(((1/2))^2 +x^2 ))  y=a+(√(a^2 +x^2 )) with a=(1/2)  (√y)=(√(a+(√(a^2 +x^2 ))))  y+(√y)=a+(√(a^2 +x^2 ))+(√(a+(√(a^2 +x^2 ))))  ......
$${y}\:=\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{…}}}} \\ $$$${y}^{\mathrm{2}} \:=\mathrm{x}^{\mathrm{2}} +\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\sqrt{…}}}}=\mathrm{x}^{\mathrm{2}} +\mathrm{y} \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{y}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4x}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{y}=\mathrm{a}+\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }\:\mathrm{with}\:\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{y}}=\sqrt{\mathrm{a}+\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{y}+\sqrt{\mathrm{y}}=\mathrm{a}+\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{a}+\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }} \\ $$$$…… \\ $$
Commented by Joel577 last updated on 25/Jul/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *