Menu Close

If-you-are-given-a-triangle-with-side-length-15-20-and-25-what-is-the-triangle-s-shortest-altitude-




Question Number 104235 by bemath last updated on 20/Jul/20
If you are given a triangle  with side length 15 , 20 and  25. what is the triangle′s  shortest altitude?
$${If}\:{you}\:{are}\:{given}\:{a}\:{triangle} \\ $$$${with}\:{side}\:{length}\:\mathrm{15}\:,\:\mathrm{20}\:{and} \\ $$$$\mathrm{25}.\:{what}\:{is}\:{the}\:{triangle}'{s} \\ $$$${shortest}\:{altitude}? \\ $$
Answered by nimnim last updated on 20/Jul/20
(15,20,25) is a Pythagorean triple.    then  area(△)=(1/2)×15×20=150  ∴ Shortest alt.=((2×(△))/(longest side))=((2×150)/(25))=12 units.
$$\left(\mathrm{15},\mathrm{20},\mathrm{25}\right)\:{is}\:{a}\:{Pythagorean}\:{triple}. \\ $$$$\:\:{then}\:\:{area}\left(\bigtriangleup\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{15}×\mathrm{20}=\mathrm{150} \\ $$$$\therefore\:{Shortest}\:{alt}.=\frac{\mathrm{2}×\left(\bigtriangleup\right)}{{longest}\:{side}}=\frac{\mathrm{2}×\mathrm{150}}{\mathrm{25}}=\mathrm{12}\:{units}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *