Menu Close

If-z-1-1-then-prove-that-arg-z-1-2-arg-z-1-




Question Number 58592 by rahul 19 last updated on 25/Apr/19
If ∣z−1∣=1, then prove that arg(z) =   (1/2)arg(z−1).
Ifz1∣=1,thenprovethatarg(z)=12arg(z1).
Answered by tanmay last updated on 26/Apr/19
z=re^(iθ) =rcosθ+irsinθ  z−1=(rcosθ−1)+irsinθ  ∣z−1∣=(√((rcosθ−1)^2 +(rsinθ)^2 ))  r^2 cos^2 θ−2rcosθ+1+r^2 sin^2 θ=1  r^2 −2rcosθ=0  r(r−2cosθ)=0  r≠0  r=2cosθ  z=2cosθ×cosθ+i2cosθsinθ  A+iB=(2cos^2 θ)+i(2sinθcosθ)  arg(z)=θ  now  z−1  2cos^2 θ+isin2θ−1  =cos2θ+isin2θ  (1/2)arg(z−1)  (1/2)×2θ=θ
z=reiθ=rcosθ+irsinθz1=(rcosθ1)+irsinθz1∣=(rcosθ1)2+(rsinθ)2r2cos2θ2rcosθ+1+r2sin2θ=1r22rcosθ=0r(r2cosθ)=0r0r=2cosθz=2cosθ×cosθ+i2cosθsinθA+iB=(2cos2θ)+i(2sinθcosθ)arg(z)=θnowz12cos2θ+isin2θ1=cos2θ+isin2θ12arg(z1)12×2θ=θ
Commented by JDamian last updated on 25/Apr/19
There is a mistake in the fourth line:  rsin^2 θ    should be    r^2 sin^2 θ
Thereisamistakeinthefourthline:rsin2θshouldber2sin2θ
Commented by tanmay last updated on 26/Apr/19
thank you sir
thankyousir
Commented by rahul 19 last updated on 26/Apr/19
thank U sir.
thankUsir.

Leave a Reply

Your email address will not be published. Required fields are marked *