Question Number 51643 by Tawa1 last updated on 29/Dec/18
$$\mathrm{If}\:\:\:\mid\mathrm{z}\mid\:=\:\mathrm{1},\:\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\frac{\mathrm{z}\:−\:\mathrm{1}}{\overset{−} {\mathrm{z}}\:−\:\mathrm{1}}\:\:\:\:\:\:\left(\mathrm{z}\:\neq\:\mathrm{1}\right)\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{pure}\:\mathrm{imaginary} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
$${z}={rcos}\theta+{irsin}\theta={r}\left({cos}\theta+{isin}\theta\right) \\ $$$$\mid{z}\mid={r}=\mathrm{1} \\ $$$$\frac{{z}−\mathrm{1}}{\overset{−} {{z}}−\mathrm{1}}=\frac{{cos}\theta+{isin}\theta−\mathrm{1}}{{cos}\theta−{isin}\theta−\mathrm{1}}=\frac{−\mathrm{2}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+{i}\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}}{−\mathrm{2}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−{i}\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}} \\ $$$$=\frac{−\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}\left({sin}\frac{\theta}{\mathrm{2}}−{icos}\frac{\theta}{\mathrm{2}}\right)}{−\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}\left({sin}\frac{\theta}{\mathrm{2}}+{icos}\frac{\theta}{\mathrm{2}}\right)} \\ $$$$=\frac{\left({sin}\frac{\theta}{\mathrm{2}}−{icos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} }{\left({sin}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} −{i}^{\mathrm{2}} \left({cos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\frac{{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−\mathrm{2}{isin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}+{i}^{\mathrm{2}} {cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}{{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=−\left({cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+{i}×\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}\right) \\ $$$$=−\left({cos}\theta+{isin}\theta\right) \\ $$$$=−{z} \\ $$$${pls}\:{check}\:{the}\:{question}… \\ $$$$ \\ $$
Commented by Tawa1 last updated on 29/Dec/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{The}\:\mathrm{question}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}\:\mathrm{sir}\:? \\ $$
Commented by peter frank last updated on 29/Dec/18
$$\Rightarrow\:\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}}\:\:\:\:{i}\:{think} \\ $$
Answered by peter frank last updated on 29/Dec/18
$$\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}} \\ $$$${z}={x}+{iy} \\ $$$$\overset{−} {{z}}={x}−{iy} \\ $$$$\frac{{x}+{iy}−\mathrm{1}}{{x}−{iy}−\mathrm{1}} \\ $$$$\:\frac{\left({x}+\mathrm{1}\right)+{iy}}{\left({x}−\mathrm{1}\right)−{iy}} \\ $$$$\left[\:\frac{\left({x}+\mathrm{1}\right)+{iy}}{\left({x}−\mathrm{1}\right)−{iy}}\right]×\left[\frac{\left({x}−\mathrm{1}\right)+{iy}}{\left({x}−\mathrm{1}\right)+{iy}\:}\right] \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}}+\frac{\mathrm{2}{xi}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}} \\ $$$${pure}\:{imaginary} \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mid{x}+{iy}\mid=\mathrm{1} \\ $$$$\mid{z}\mid=\mathrm{1} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 29/Dec/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$