Menu Close

If-z-1-prove-that-z-1-z-1-z-1-is-a-pure-imaginary-




Question Number 51643 by Tawa1 last updated on 29/Dec/18
If   ∣z∣ = 1,    prove that     ((z − 1)/(z^−  − 1))      (z ≠ 1)   is a pure imaginary
Ifz=1,provethatz1z1(z1)isapureimaginary
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
z=rcosθ+irsinθ=r(cosθ+isinθ)  ∣z∣=r=1  ((z−1)/(z^− −1))=((cosθ+isinθ−1)/(cosθ−isinθ−1))=((−2sin^2 (θ/2)+i2sin(θ/2)cos(θ/2))/(−2sin^2 (θ/2)−i2sin(θ/2)cos(θ/2)))  =((−2sin(θ/2)(sin(θ/2)−icos(θ/2)))/(−2sin(θ/2)(sin(θ/2)+icos(θ/2))))  =(((sin(θ/2)−icos(θ/2))^2 )/((sin(θ/2))^2 −i^2 (cos(θ/2))^2 ))  =((sin^2 (θ/2)−2isin(θ/2)cos(θ/2)+i^2 cos^2 (θ/2))/(sin^2 (θ/2)+cos^2 (θ/2)))  =−(cos^2 (θ/2)−sin^2 (θ/2)+i×2sin(θ/2)cos(θ/2))  =−(cosθ+isinθ)  =−z  pls check the question...
z=rcosθ+irsinθ=r(cosθ+isinθ)z∣=r=1z1z1=cosθ+isinθ1cosθisinθ1=2sin2θ2+i2sinθ2cosθ22sin2θ2i2sinθ2cosθ2=2sinθ2(sinθ2icosθ2)2sinθ2(sinθ2+icosθ2)=(sinθ2icosθ2)2(sinθ2)2i2(cosθ2)2=sin2θ22isinθ2cosθ2+i2cos2θ2sin2θ2+cos2θ2=(cos2θ2sin2θ2+i×2sinθ2cosθ2)=(cosθ+isinθ)=zplscheckthequestion
Commented by Tawa1 last updated on 29/Dec/18
God bless you sir.  The question is not true sir ?
Godblessyousir.Thequestionisnottruesir?
Commented by peter frank last updated on 29/Dec/18
⇒ ((z+1)/(z−1))    i think
z+1z1ithink
Answered by peter frank last updated on 29/Dec/18
((z+1)/(z−1))  z=x+iy  z^− =x−iy  ((x+iy−1)/(x−iy−1))   (((x+1)+iy)/((x−1)−iy))  [ (((x+1)+iy)/((x−1)−iy))]×[(((x−1)+iy)/((x−1)+iy ))]  ((x^2 +y^2 −1)/(x^2 +y^2 −2x))+((2xi)/(x^2 +y^2 −2x))  pure imaginary  ((x^2 +y^2 −1)/(x^2 +y^2 −2x))=0  x^2 +y^2 −1=0  x^2 +y^2 =1  ∣x+iy∣=1  ∣z∣=1
z+1z1z=x+iyz=xiyx+iy1xiy1(x+1)+iy(x1)iy[(x+1)+iy(x1)iy]×[(x1)+iy(x1)+iy]x2+y21x2+y22x+2xix2+y22xpureimaginaryx2+y21x2+y22x=0x2+y21=0x2+y2=1x+iy∣=1z∣=1
Commented by Tawa1 last updated on 29/Dec/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *