Menu Close

if-Z-1-Then-1-Z-1-Z-is-equal-to-a-Z-b-Z-c-Z-Z-d-N-O-T-




Question Number 16540 by gourav~ last updated on 23/Jun/17
if ∣Z∣=1 Then ((1+Z)/(1+Z^� ))  is equal to...  a) Z    b)  Z^�   c) Z+Z^�   d) N.O.T
ifZ∣=1Then1+Z1+Z¯isequaltoa)Zb)Z¯c)Z+Z¯d)N.O.T
Answered by sma3l2996 last updated on 23/Jun/17
Z=a+ib⇔∣Z∣=(√(a^2 +b^2 ))=1⇔b=(√(1−a^2 ))  ((1+a+i(√(1−a^2 )))/(1+a−i(√(1−a^2 ))))=(((1+a+i(√(1−a^2 )))^2 )/((1+a)^2 −(i(√(1−a^2 )))^2 ))=(((1+a)^2 +2(1+a)i(√(1−a^2 ))−1+a^2 )/(1+a^2 +2a+1−a^2 ))  =((2a^2 +2a+2(1+a)i(√(1−a^2 )))/(2+2a))=((2(1+a)(a+i(√(1−a^2 ))))/(2(1+a)))  =a+i(√(1−a^2 ))=Z  so the answer is (a)
Z=a+ib⇔∣Z∣=a2+b2=1b=1a21+a+i1a21+ai1a2=(1+a+i1a2)2(1+a)2(i1a2)2=(1+a)2+2(1+a)i1a21+a21+a2+2a+1a2=2a2+2a+2(1+a)i1a22+2a=2(1+a)(a+i1a2)2(1+a)=a+i1a2=Zsotheansweris(a)
Answered by ajfour last updated on 23/Jun/17
  let  z=e^(iθ)    then   z^�  =e^(−iθ)      ((1+z)/(1+z^� ))= ((1+e^(iθ) )/(1+e^(−iθ) )) =((e^(iθ/2) /e^(−iθ/2) ))(((e^(−iθ/2) +e^(iθ/2) )/(e^(iθ/2) +e^(−iθ/2) )))   = e^(iθ)  = z .   option (a) .
letz=eiθthenz¯=eiθ1+z1+z¯=1+eiθ1+eiθ=(eiθ/2eiθ/2)(eiθ/2+eiθ/2eiθ/2+eiθ/2)=eiθ=z.option(a).

Leave a Reply

Your email address will not be published. Required fields are marked *