Menu Close

If-z-1-z-2-and-z-3-z-4-are-two-pairs-of-conjugate-complex-numbers-then-find-value-of-arg-z-1-z-4-arg-z-2-z-3-




Question Number 49174 by rahul 19 last updated on 04/Dec/18
If z_1 ,z_2  and z_3 ,z_(4 ) are two pairs of   conjugate complex numbers , then   find value of arg((z_1 /z_4 ))+arg((z_2 /z_3 )) ?
$${If}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} \:{and}\:{z}_{\mathrm{3}} ,{z}_{\mathrm{4}\:} {are}\:{two}\:{pairs}\:{of}\: \\ $$$${conjugate}\:{complex}\:{numbers}\:,\:{then}\: \\ $$$${find}\:{value}\:{of}\:{arg}\left(\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{4}} }\right)+{arg}\left(\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }\right)\:? \\ $$
Commented by rahul 19 last updated on 04/Dec/18
arg(((z_1 z_2 )/(z_4 z_3 )))= arg(((∣z_1 ∣^2 )/(∣z_3 ∣^2 )))=0  (∵ z_2 =z_1 ^_  ⇒z_1 z_2 = ∣z_1 ∣^(2 )  and z_3 z_4 = ∣z_3 ∣^2 )
$${arg}\left(\frac{{z}_{\mathrm{1}} {z}_{\mathrm{2}} }{{z}_{\mathrm{4}} {z}_{\mathrm{3}} }\right)=\:{arg}\left(\frac{\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} }{\mid{z}_{\mathrm{3}} \mid^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$\left(\because\:{z}_{\mathrm{2}} =\overset{\_} {{z}}_{\mathrm{1}} \:\Rightarrow{z}_{\mathrm{1}} {z}_{\mathrm{2}} =\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}\:} \:{and}\:{z}_{\mathrm{3}} {z}_{\mathrm{4}} =\:\mid{z}_{\mathrm{3}} \mid^{\mathrm{2}} \right) \\ $$
Answered by MJS last updated on 04/Dec/18
z_1 =pe^(iα)   z_2 =pe^(−iα)   z_3 =qe^(iβ)   z_4 =qe^(−iβ)   z_5 =(z_1 /z_4 )=(p/q)e^(i(α+β))   z_6 =(z_2 /z_3 )=(p/q)e^(−i(α+β))   arg(z_5 )+arg(z_6 )=0
$${z}_{\mathrm{1}} ={p}\mathrm{e}^{\mathrm{i}\alpha} \\ $$$${z}_{\mathrm{2}} ={p}\mathrm{e}^{−\mathrm{i}\alpha} \\ $$$${z}_{\mathrm{3}} ={q}\mathrm{e}^{\mathrm{i}\beta} \\ $$$${z}_{\mathrm{4}} ={q}\mathrm{e}^{−\mathrm{i}\beta} \\ $$$${z}_{\mathrm{5}} =\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{4}} }=\frac{{p}}{{q}}\mathrm{e}^{\mathrm{i}\left(\alpha+\beta\right)} \\ $$$${z}_{\mathrm{6}} =\frac{{z}_{\mathrm{2}} }{{z}_{\mathrm{3}} }=\frac{{p}}{{q}}\mathrm{e}^{−\mathrm{i}\left(\alpha+\beta\right)} \\ $$$$\mathrm{arg}\left({z}_{\mathrm{5}} \right)+\mathrm{arg}\left({z}_{\mathrm{6}} \right)=\mathrm{0} \\ $$
Commented by rahul 19 last updated on 04/Dec/18
thank you sir!����

Leave a Reply

Your email address will not be published. Required fields are marked *