Menu Close

If-z-1-z-2-z-1-z-2-then-prove-that-arg-z-1-z-2-pi-




Question Number 49177 by rahul 19 last updated on 04/Dec/18
If ∣z_1 −z_2 ∣ = ∣z_1 ∣+∣z_2 ∣ , then prove   that arg((z_1 /z_2 ))=π .
Ifz1z2=z1+z2,thenprovethatarg(z1z2)=π.
Answered by MJS last updated on 04/Dec/18
z_1 =pe^(iα) ; z_2 =qe^(iβ)   ∣z_1 −z_2 ∣=(√(p^2 +q^2 −2pq cos (α−β)))  ∣z_1 ∣+∣z_2 ∣=∣p∣+∣q∣  ⇒ −2pqcos (α−β)=2pq  ⇒ cos (α−β)=−1 ⇒ α−β=π  [(z_1 /z_2 )=(p/q)e^(i(α−β)) ]
z1=peiα;z2=qeiβz1z2∣=p2+q22pqcos(αβ)z1+z2∣=∣p+q2pqcos(αβ)=2pqcos(αβ)=1αβ=π[z1z2=pqei(αβ)]
Commented by MJS last updated on 04/Dec/18
...corrected
corrected
Commented by rahul 19 last updated on 04/Dec/18
pls explain 2^(nd)  line .^.^.^(...^(....) )
plsexplain2ndline.......
Commented by MJS last updated on 04/Dec/18
z_1 =p(cos α +isin α)  z_2 =q(cos β +isin β)  z_1 −z_2 =pcos α −qcos β +i(psin α −qsin β)  ∣z_1 −z_2 ∣=(√((pcos α −qcos β)^2 +(psin α −qsin β)^2 ))=  =(√(p^2 +q^2 −2pq(cos α cos β +sin α sin β)))=  =(√(p^2 +q^2 −2pq cos (α−β)))
z1=p(cosα+isinα)z2=q(cosβ+isinβ)z1z2=pcosαqcosβ+i(psinαqsinβ)z1z2∣=(pcosαqcosβ)2+(psinαqsinβ)2==p2+q22pq(cosαcosβ+sinαsinβ)==p2+q22pqcos(αβ)
Commented by rahul 19 last updated on 04/Dec/18
thank you sir! ����
Commented by MJS last updated on 04/Dec/18
you′re welcome
yourewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *