Menu Close

if-z-1-z-2-z-3-1-and-1-z-1-1-z-2-1-z-3-1-find-z-1-z-2-z-3-z-1-z-2-z-3-complex-number-




Question Number 130818 by Study last updated on 29/Jan/21
if ∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1    and   ∣(1/z_1 )∣+∣(1/z_2 )∣+∣(1/z_3 )∣=1   find ∣z_1 +z_2 +z_3 ∣=?     z_1 ,z_2 ,z_3 ∈complex number
ifz1∣=∣z2∣=∣z3∣=1and1z1+1z2+1z3∣=1findz1+z2+z3∣=?z1,z2,z3complexnumber
Answered by TheSupreme last updated on 29/Jan/21
z_i =ρ_i e^(iθ_i )   ρ_1 =ρ_2 =ρ_3 =1  (1/ρ_1 )+(1/ρ_2 )+(1/ρ_3 )=1   3=1  impossible  we can evaluate  (1/z_1 )+(1/z_2 )+(1/z_3 )=1  e^(−iθ_1 ) +e^(−iθ_2 ) +e^(−iθ_3 ) =1  then  e^(iθ_1 ) +e^(iθ_2 ) +e^(iθ_3 ) = (e^(iθ_1 ) +e^(iθ_2 ) +e^(iθ_3 ) )^∗ =1^∗ =1
zi=ρieiθiρ1=ρ2=ρ3=11ρ1+1ρ2+1ρ3=13=1impossiblewecanevaluate1z1+1z2+1z3=1eiθ1+eiθ2+eiθ3=1theneiθ1+eiθ2+eiθ3=(eiθ1+eiθ2+eiθ3)=1=1
Commented by Study last updated on 30/Jan/21
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *