Menu Close

if-z-27-find-all-the-root-of-z-in-complex-plain-




Question Number 36676 by tawa tawa last updated on 04/Jun/18
if  z = − 27,  find all the root of z in complex plain
$$\mathrm{if}\:\:\mathrm{z}\:=\:−\:\mathrm{27},\:\:\mathrm{find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{z}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{plain} \\ $$
Commented by abdo mathsup 649 cc last updated on 04/Jun/18
the roots are?the comlex z / z^2  =−27 =(i(√(27)))^2  so  the roots are i(√(27))  and −i(√(27)) .
$${the}\:{roots}\:{are}?{the}\:{comlex}\:{z}\:/\:{z}^{\mathrm{2}} \:=−\mathrm{27}\:=\left({i}\sqrt{\mathrm{27}}\right)^{\mathrm{2}} \:{so} \\ $$$${the}\:{roots}\:{are}\:{i}\sqrt{\mathrm{27}}\:\:{and}\:−{i}\sqrt{\mathrm{27}}\:. \\ $$
Commented by tawa tawa last updated on 04/Jun/18
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by abdo.msup.com last updated on 05/Jun/18
a lots of thanks sir Tawa Tawa...
$${a}\:{lots}\:{of}\:{thanks}\:{sir}\:{Tawa}\:{Tawa}… \\ $$
Answered by Rasheed.Sindhi last updated on 04/Jun/18
Let z=x+iy      x+iy=−27  x=−27,y=0  (−27,0) (single root)
$$\mathrm{Let}\:\mathrm{z}=\mathrm{x}+\mathrm{iy} \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{iy}=−\mathrm{27} \\ $$$$\mathrm{x}=−\mathrm{27},\mathrm{y}=\mathrm{0} \\ $$$$\left(−\mathrm{27},\mathrm{0}\right)\:\left(\mathrm{single}\:\mathrm{root}\right) \\ $$
Commented by tawa tawa last updated on 05/Jun/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *