Menu Close

If-z-3-what-is-the-maximum-and-minimum-value-of-z-1-i-3-




Question Number 111850 by bemath last updated on 05/Sep/20
If ∣z∣ = 3 , what is the maximum  and minimum value of ∣z−1+i(√3) ∣ ?
Ifz=3,whatisthemaximumandminimumvalueofz1+i3?
Answered by ajfour last updated on 05/Sep/20
max∣z−1+i(√3)∣=5  min∣z−1+i(√3)∣=1
maxz1+i3∣=5minz1+i3∣=1
Commented by ajfour last updated on 05/Sep/20
Answered by Her_Majesty last updated on 05/Sep/20
∣z∣=3 ⇒ z=3cos θ +3i sin θ  it′s a circle with radius 3  −1+i(√3)=2cos ((2π)/3) +2i sin ((2π)/3)  max ∣z−1+i(√3)∣=5  min ∣z−1+i(√3)∣=1
z∣=3z=3cosθ+3isinθitsacirclewithradius31+i3=2cos2π3+2isin2π3maxz1+i3∣=5minz1+i3∣=1
Answered by bemath last updated on 05/Sep/20
great santuy  both ....
greatsantuyboth.
Answered by 1549442205PVT last updated on 05/Sep/20
Put z=a+bi⇒z−1+i(√3)=(a−1)+i(b+(√3))  ∣z∣=3⇔(√(a^2 +b^2 )) =3⇔a^2 +b^2 =9(1)  ∣z−1+i(√3)∣=(√((a−1)^2 +(b+(√3))^2 ))  We need find least and greaest value  of the expression   P=(√((a−1)^2 +(b+(√3))^2 )) which is   equivalent to find least and greaest  value of  Q=(a−1)^2 +(b+(√3))^2   =13+2b(√3)−a(2)  Apply the inequality ∣ax+by∣≤  (√((a^2 +b^2 )(x^2 +y^2 ))) we have  ∣2b(√3)−a∣=∣(2(√3)).b+(−2).a∣≤  (√([(2(√3))^2 +(−2)^2 ](a^2 +b^2 ))) =(√(16.9))=12  ⇒−12≤2b(√3)−2a≤12   (3)  From (2)and (3) we get  1≤Q≤25⇔1≤P≤5  P=1⇔Q=1⇔ { ((a=3/2)),((b=−3(√3)/2)) :}  P=5⇔Q=25⇔ { ((a=−3/2)),((b=3(√3)/2)) :}  Thus,P=∣z−1+i(√3) ∣   has the smallest  value equal to 1 when (a,b)=((3/2),((−3(√3))/2))  i.e when z=(3/2)−((3i(√3))/2)  and the greatest value equal to 5  when (a,b)=(((−3)/2),((3(√3))/2)) i.e z=((−3)/2)+((3i(√3))/2)
Putz=a+biz1+i3=(a1)+i(b+3)z∣=3a2+b2=3a2+b2=9(1)z1+i3∣=(a1)2+(b+3)2WeneedfindleastandgreaestvalueoftheexpressionP=(a1)2+(b+3)2whichisequivalenttofindleastandgreaestvalueofQ=(a1)2+(b+3)2=13+2b3a(2)Applytheinequalityax+by∣⩽(a2+b2)(x2+y2)wehave2b3a∣=∣(23).b+(2).a∣⩽[(23)2+(2)2](a2+b2)=16.9=12122b32a12(3)From(2)and(3)weget1Q251P5P=1Q=1{a=3/2b=33/2P=5Q=25{a=3/2b=33/2Thus,P=∣z1+i3hasthesmallestvalueequalto1when(a,b)=(32,332)i.ewhenz=323i32andthegreatestvalueequalto5when(a,b)=(32,332)i.ez=32+3i32

Leave a Reply

Your email address will not be published. Required fields are marked *