Menu Close

If-z-cos-i-sin-prove-that-cos-6-1-32-cos-6-6cos-4-15cos-2-10-Hence-or-otherwise-find-the-value-of-0-a-a-2-x-2-5-dx-




Question Number 146772 by ZiYangLee last updated on 15/Jul/21
If z=cos θ+i sin θ, prove that  cos^6 θ=(1/(32))(cos 6θ+6cos 4θ+15cos 2θ+10).  Hence or otherwise, find the value of                ∫_0 ^( a) (√((a^2 −x^2 )^5 )) dx.
$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{6cos}\:\mathrm{4}\theta+\mathrm{15cos}\:\mathrm{2}\theta+\mathrm{10}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{a}} \sqrt{\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dx}. \\ $$
Answered by mathmax by abdo last updated on 15/Jul/21
Ψ=∫_0 ^a (a^2 −x^2 )^(5/2)  dx changement x=asint give  Ψ=∫_0 ^(π/2)  a^5 (cos^5 θ)acosθ dθ =a^6  ∫_0 ^(π/2)  cos^6  θ dθ  =(a^6 /(32)){ ∫_0 ^(π/2)  cos(6θ)dθ +6∫_0 ^(π/2)  cos(4θ)dθ +15∫_0 ^(π/2) cos(2θ)dθ +10∫_0 ^(π/2) [dθ}  =(a^6 /(32)){[(1/6)sin(6θ)]_0 ^(π/2)  +6[(1/4)sin(4θ)]_0 ^(π/2) +15[(1/2)sin(2θ)]_0 ^(π/2)  +5π}  =(a^6 /(32)){0+0+0+5π}=((5π)/(32))a^6   cos^6 θ =(((e^(iθ)  +e^(−iθ) )/2))^6  =(1/2^6 )Σ_(k=0) ^6  C_6 ^k  (e^(iθ) )^k  (e^(−iθ) )^(6−k)   =(1/2^6 )Σ_(k=0) ^6 C_6 ^k  e^(ikθ+ikθ−6iθ)  =(1/2^6 )Σ_(k=0) ^6  C_6 ^k  e^(i(2k−6)θ)   =.....
$$\Psi=\int_{\mathrm{0}} ^{\mathrm{a}} \left(\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:\mathrm{dx}\:\mathrm{changement}\:\mathrm{x}=\mathrm{asint}\:\mathrm{give} \\ $$$$\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{a}^{\mathrm{5}} \left(\mathrm{cos}^{\mathrm{5}} \theta\right)\mathrm{acos}\theta\:\mathrm{d}\theta\:=\mathrm{a}^{\mathrm{6}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{6}} \:\theta\:\mathrm{d}\theta \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\left(\mathrm{6}\theta\right)\mathrm{d}\theta\:+\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\left(\mathrm{4}\theta\right)\mathrm{d}\theta\:+\mathrm{15}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\left(\mathrm{2}\theta\right)\mathrm{d}\theta\:+\mathrm{10}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{d}\theta\right\}\right. \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\left[\frac{\mathrm{1}}{\mathrm{6}}\mathrm{sin}\left(\mathrm{6}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\mathrm{6}\left[\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{4}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\mathrm{15}\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\mathrm{5}\pi\right\} \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{5}\pi\right\}=\frac{\mathrm{5}\pi}{\mathrm{32}}\mathrm{a}^{\mathrm{6}} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta\:=\left(\frac{\mathrm{e}^{\mathrm{i}\theta} \:+\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2}}\right)^{\mathrm{6}} \:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \:\mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\left(\mathrm{e}^{\mathrm{i}\theta} \right)^{\mathrm{k}} \:\left(\mathrm{e}^{−\mathrm{i}\theta} \right)^{\mathrm{6}−\mathrm{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{ik}\theta+\mathrm{ik}\theta−\mathrm{6i}\theta} \:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \:\mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{2k}−\mathrm{6}\right)\theta} \\ $$$$=….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *