Menu Close

If-z-cos-isin-is-a-root-of-equation-a-0-z-n-a-1-z-n-1-a-2-z-n-2-a-n-1-z-a-n-0-then-prove-that-i-a-0-a-1-cos-a-2-cos-2-a-n-cos-n-0-ii-a-1-sin-a-2-sin-2-a-n-sin




Question Number 32160 by rahul 19 last updated on 20/Mar/18
If z=cosθ+isinθ is a root of equation  a_0 z^n +a_1 z^(n−1) +a_2 z^(n−2) +.....+a_(n−1) z+a_n =0  then prove that:  i) a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ=0  ii) a_1 sin θ + a_2 sin 2θ+....+a_n sin nθ=0.
\boldsymbolIfz=cosθ+isinθisarootofequationa0zn+a1zn1+a2zn2+..+an1z+an=0thenprovethat:i)a0+a1cosθ+a2cos2θ+..+ancosnθ=0ii)a1sinθ+a2sin2θ+.+ansinnθ=0.
Answered by rahul 19 last updated on 20/Mar/18
My try:  Dividing the whole eq^n  by z^n ,  ⇒a_0 +a_1 z^(−1) +.......+a_(n−1) z^(1−n) +a_n z^(−n) =0  Now z satisfies the above eq^n ,  ⇒a_0 +a_1 (cos θ−isin θ)+...........  ⇒...+a_(n−1) (cos(n−1)θ−isin(n−1)θ)  ⇒+a_n (cosnθ−isin nθ)=0.  (by de moivre′s theorem).  Collecting the real and imaginary  part seperately ,  ⇒(a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ)  −i(a_1 sin θ+a_2 sin 2θ+.....+a_n sin nθ)=0  How to proceed further ?
Mytry:Dividingthewholeeqnbyzn,a0+a1z1+.+an1z1n+anzn=0Nowzsatisfiestheaboveeqn,a0+a1(cosθisinθ)+..+an1(cos(n1)θisin(n1)θ)+an(cosnθisinnθ)=0.(bydemoivrestheorem).\boldsymbolCollectingtherealandimaginarypartseperately,(a0+a1cosθ+a2cos2θ+..+ancosnθ)i(a1sinθ+a2sin2θ+..+ansinnθ)=0Howtoproceedfurther?
Commented by rahul 19 last updated on 21/Mar/18
hey, @above but here my no. is  a−ib=0⇒a=ib so is it compulsory that  a=b=0.
hey,@abovebutheremyno.isaib=0a=ibsoisitcompulsorythata=b=0.
Commented by Tinkutara last updated on 20/Mar/18
A complex number a+ib=0 only when  a=b=0. So you have done complete  solution!
Acomplexnumbera+ib=0onlywhena=b=0.Soyouhavedonecompletesolution!
Commented by rahul 19 last updated on 20/Mar/18
Hahaha.....  thanks for checking!
Hahaha..thanksforchecking!
Commented by mrW2 last updated on 21/Mar/18
in the notation for complex numbers  z=a+ib  the sign + doesn′t mean the sum of  a and ib.
inthenotationforcomplexnumbersz=a+ibthesign+doesntmeanthesumofaandib.
Commented by mrW2 last updated on 21/Mar/18
Commented by rahul 19 last updated on 21/Mar/18
ok, thank you sir.
ok,thankyousir.ok,thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *