Question Number 32160 by rahul 19 last updated on 20/Mar/18
$$\boldsymbol{{I}}{f}\:{z}={cos}\theta+{isin}\theta\:{is}\:{a}\:{root}\:{of}\:{equation} \\ $$$${a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +{a}_{\mathrm{2}} {z}^{{n}−\mathrm{2}} +…..+{a}_{{n}−\mathrm{1}} {z}+{a}_{{n}} =\mathrm{0} \\ $$$${then}\:{prove}\:{that}: \\ $$$$\left.{i}\right)\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \mathrm{cos}\:\theta+{a}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta+…..+{a}_{{n}} \mathrm{cos}\:{n}\theta=\mathrm{0} \\ $$$$\left.{ii}\right)\:{a}_{\mathrm{1}} \mathrm{sin}\:\theta\:+\:{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+….+{a}_{{n}} \mathrm{sin}\:{n}\theta=\mathrm{0}. \\ $$
Answered by rahul 19 last updated on 20/Mar/18
$${My}\:{try}: \\ $$$${Dividing}\:{the}\:{whole}\:{eq}^{{n}} \:{by}\:{z}^{{n}} , \\ $$$$\Rightarrow{a}_{\mathrm{0}} +{a}_{\mathrm{1}} {z}^{−\mathrm{1}} +…….+{a}_{{n}−\mathrm{1}} {z}^{\mathrm{1}−{n}} +{a}_{{n}} {z}^{−{n}} =\mathrm{0} \\ $$$${Now}\:{z}\:{satisfies}\:{the}\:{above}\:{eq}^{{n}} , \\ $$$$\Rightarrow{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \left(\mathrm{cos}\:\theta−{i}\mathrm{sin}\:\theta\right)+……….. \\ $$$$\Rightarrow…+{a}_{{n}−\mathrm{1}} \left({cos}\left({n}−\mathrm{1}\right)\theta−{isin}\left({n}−\mathrm{1}\right)\theta\right) \\ $$$$\Rightarrow+{a}_{{n}} \left({cosn}\theta−{isin}\:{n}\theta\right)=\mathrm{0}. \\ $$$$\left({by}\:{de}\:{moivre}'{s}\:{theorem}\right). \\ $$$$\boldsymbol{{C}}{ollecting}\:{the}\:{real}\:{and}\:{imaginary} \\ $$$${part}\:{seperately}\:, \\ $$$$\Rightarrow\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} \mathrm{cos}\:\theta+{a}_{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta+…..+{a}_{{n}} \mathrm{cos}\:{n}\theta\right) \\ $$$$−{i}\left({a}_{\mathrm{1}} \mathrm{sin}\:\theta+{a}_{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+…..+{a}_{{n}} \mathrm{sin}\:{n}\theta\right)=\mathrm{0} \\ $$$${How}\:{to}\:{proceed}\:{further}\:? \\ $$
Commented by rahul 19 last updated on 21/Mar/18
$${hey},\:@{above}\:{but}\:{here}\:{my}\:{no}.\:{is} \\ $$$${a}−{ib}=\mathrm{0}\Rightarrow{a}={ib}\:{so}\:{is}\:{it}\:{compulsory}\:{that} \\ $$$${a}={b}=\mathrm{0}. \\ $$
Commented by Tinkutara last updated on 20/Mar/18
$${A}\:{complex}\:{number}\:{a}+{ib}=\mathrm{0}\:{only}\:{when} \\ $$$${a}={b}=\mathrm{0}.\:{So}\:{you}\:{have}\:{done}\:{complete} \\ $$$${solution}! \\ $$
Commented by rahul 19 last updated on 20/Mar/18
$${Hahaha}….. \\ $$$${thanks}\:{for}\:{checking}! \\ $$
Commented by mrW2 last updated on 21/Mar/18
$${in}\:{the}\:{notation}\:{for}\:{complex}\:{numbers} \\ $$$${z}={a}+{ib} \\ $$$${the}\:{sign}\:+\:{doesn}'{t}\:{mean}\:{the}\:{sum}\:{of} \\ $$$${a}\:{and}\:{ib}. \\ $$
Commented by mrW2 last updated on 21/Mar/18
Commented by rahul 19 last updated on 21/Mar/18
$${ok},\:{thank}\:{you}\:{sir}. \\ $$