Menu Close

if-Z-cos-isin-prove-that-Z-5-1-Z-2-2isin5-help-me-sir-




Question Number 127558 by mohammad17 last updated on 30/Dec/20
if Z=cosθ+isinθ prove that     Z^5 −(1/Z^2 )=2isin5θ     help me sir
$${if}\:{Z}={cos}\theta+{isin}\theta\:{prove}\:{that}\: \\ $$$$ \\ $$$${Z}^{\mathrm{5}} −\frac{\mathrm{1}}{{Z}^{\mathrm{2}} }=\mathrm{2}{isin}\mathrm{5}\theta\: \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Commented by mohammad17 last updated on 30/Dec/20
?
$$? \\ $$
Commented by MJS_new last updated on 31/Dec/20
z^5 +(1/z^2 )=cos 5θ −cos 2θ +i (sin 5θ +sin 2θ)
$${z}^{\mathrm{5}} +\frac{\mathrm{1}}{{z}^{\mathrm{2}} }=\mathrm{cos}\:\mathrm{5}\theta\:−\mathrm{cos}\:\mathrm{2}\theta\:+\mathrm{i}\:\left(\mathrm{sin}\:\mathrm{5}\theta\:+\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$
Answered by mohammad17 last updated on 30/Dec/20
how can solve this
$${how}\:{can}\:{solve}\:{this} \\ $$
Answered by Dwaipayan Shikari last updated on 30/Dec/20
z^5 −z^(−5) =e^(5iθ) −e^(−5iθ) =2isin5θ
$${z}^{\mathrm{5}} −{z}^{−\mathrm{5}} ={e}^{\mathrm{5}{i}\theta} −{e}^{−\mathrm{5}{i}\theta} =\mathrm{2}{isin}\mathrm{5}\theta \\ $$
Commented by mohammad17 last updated on 30/Dec/20
put sir how became z^(−5) can you give me stebs
$${put}\:{sir}\:{how}\:{became}\:{z}^{−\mathrm{5}} {can}\:{you}\:{give}\:{me}\:{stebs} \\ $$
Commented by Dwaipayan Shikari last updated on 30/Dec/20
I think mistake in question .It should be z^(−5)  instead of z^(−2)
$${I}\:{think}\:{mistake}\:{in}\:{question}\:.{It}\:{should}\:{be}\:{z}^{−\mathrm{5}} \:{instead}\:{of}\:{z}^{−\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *