Menu Close

If-z-is-a-complex-number-satisfying-z-z-1-1-then-z-n-z-n-n-N-has-the-value-1-2-1-n-when-n-is-a-multiple-of-3-2-1-n-1-when-n-is-not-a-multiple-of-3-3-1-n-1-w




Question Number 20933 by Tinkutara last updated on 08/Sep/17
If z is a complex number satisfying  z + z^(−1)  = 1, then z^n  + z^(−n) , n ∈ N, has  the value  (1) 2(−1)^n , when n is a multiple of 3  (2) (−1)^(n−1) , when n is not a multiple of  3  (3) (−1)^(n+1) , when n is a multiple of 3  (4) 0 when n is not a multiple of 3
Ifzisacomplexnumbersatisfyingz+z1=1,thenzn+zn,nN,hasthevalue(1)2(1)n,whennisamultipleof3(2)(1)n1,whennisnotamultipleof3(3)(1)n+1,whennisamultipleof3(4)0whennisnotamultipleof3
Answered by $@ty@m last updated on 09/Sep/17
Given  z+(1/z)=1  ⇒z^2 −z+1=0  ⇒z=((1±i(√3))/2)  ⇒z=cos (π/3)±isin (π/3)  ∴z^n  + z^(−n) =cos ((nπ)/3)+isin ((nπ)/3)+cos ((nπ)/3)−isin ((nπ)/3)  =2cos((nπ)/3)  Case (i) n=1  2cos((nπ)/3)=2cos (π/3)=2×(1/2)=1  Case (ii) n=2  2cos((nπ)/3)=2cos ((2π)/3)=2×((−1)/2)=−1  Case (iii) n=3  2cos((nπ)/3)=2cos π=2×(−1)=−2  and so on....  ⇒(1) &(2) are correct answers.
Givenz+1z=1z2z+1=0z=1±i32z=cosπ3±isinπ3zn+zn=cosnπ3+isinnπ3+cosnπ3isinnπ3=2cosnπ3Case(i)n=12cosnπ3=2cosπ3=2×12=1Case(ii)n=22cosnπ3=2cos2π3=2×12=1Case(iii)n=32cosnπ3=2cosπ=2×(1)=2andsoon.(1)&(2)arecorrectanswers.
Commented by Tinkutara last updated on 09/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *