Menu Close

If-z-satisfies-z-1-lt-z-3-then-2z-3-i-satisfies-1-5-i-lt-3-i-2-5-lt-3-3-Im-i-gt-1-4-arg-1-lt-pi-2-




Question Number 20934 by Tinkutara last updated on 08/Sep/17
If z satisfies ∣z − 1∣ < ∣z + 3∣, then ω =  2z + 3 − i satisfies  (1) ∣ω − 5 − i∣ < ∣ω + 3 + i∣  (2) ∣ω − 5∣ < ∣ω + 3∣  (3) Im (iω) > 1  (4) ∣arg(ω − 1)∣ < (π/2)
$$\mathrm{If}\:{z}\:\mathrm{satisfies}\:\mid{z}\:−\:\mathrm{1}\mid\:<\:\mid{z}\:+\:\mathrm{3}\mid,\:\mathrm{then}\:\omega\:= \\ $$$$\mathrm{2}{z}\:+\:\mathrm{3}\:−\:{i}\:\mathrm{satisfies} \\ $$$$\left(\mathrm{1}\right)\:\mid\omega\:−\:\mathrm{5}\:−\:{i}\mid\:<\:\mid\omega\:+\:\mathrm{3}\:+\:{i}\mid \\ $$$$\left(\mathrm{2}\right)\:\mid\omega\:−\:\mathrm{5}\mid\:<\:\mid\omega\:+\:\mathrm{3}\mid \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Im}\:\left({i}\omega\right)\:>\:\mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:\mid\mathrm{arg}\left(\omega\:−\:\mathrm{1}\right)\mid\:<\:\frac{\pi}{\mathrm{2}} \\ $$
Commented by Tinkutara last updated on 10/Sep/17
help pls
$$\mathrm{help}\:\mathrm{pls} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *