Menu Close

If-z-x-2-tan-1-y-x-find-2-z-x-y-at-1-1-




Question Number 116319 by bemath last updated on 03/Oct/20
If z = x^2  tan^(−1) ((y/x)), find (∂^2 z/(∂x∂y))   at (1,1)
Ifz=x2tan1(yx),find2zxyat(1,1)
Answered by john santu last updated on 03/Oct/20
(∂z/∂y) = x^2 .(x^2 /(x^2 +y^2 )).(∂/∂y)((y/x))=(x^3 /(x^2 +y^2 ))  (∂^2 z/(∂x∂y)) = (∂/∂x) ((∂z/∂y)) = (∂/∂x)((x^3 /(x^2 +y^2 )))               = ((3x^2 (x^2 +y^2 )−x^3 (2x))/((x^2 +y^2 )^2 ))                = ((x^4 +3x^2 y^2 )/((x^2 +y^2 )^2 )) ∣_((1,1))  = ((1+3)/((1+1)^2 ))                = 1 .
zy=x2.x2x2+y2.y(yx)=x3x2+y22zxy=x(zy)=x(x3x2+y2)=3x2(x2+y2)x3(2x)(x2+y2)2=x4+3x2y2(x2+y2)2(1,1)=1+3(1+1)2=1.

Leave a Reply

Your email address will not be published. Required fields are marked *