Menu Close

Image-not-getting-attached-Please-see-the-link-below-




Question Number 28406 by Tinkutara last updated on 25/Jan/18
Image not getting attached. Please  see the link below.
Imagenotgettingattached.Pleaseseethelinkbelow.
Commented by Tinkutara last updated on 25/Jan/18
http://ibb.co/iaU0Jb Any method other than looking options?
Answered by Rasheed.Sindhi last updated on 26/Jan/18
     α,β are roots of x^2 −6p_1 x+2=0;       β,γ are roots of x^2 −6p_2 x+3=0;       γ ,αare roots of x^2 −6p_3 x+6=0;       p_1 ,p_2  &p_(3 ) are positive then:  Choose the correct answer  1.The values of α,β,γ  respectively are  (1) 2,3,1    (2) 2,1,3  (3) 1,2,3  (4)  −1,−2,−3  2.The values of p_1 ,p_2 ,p_3  respectively are  (1) (1/2),(2/3),(5/6)   (2) 1,2,5  (3) 6,1,4   (4) 2,(3/2),(6/5)  −.−.−.−.−.−  1.  αβ=2 ,βγ=3 , γα=6  Multiplying  α^2 β^2 γ^2 =36  αβγ=±6  ((αβγ)/(βγ))=((±6)/3)⇒α=±2  ((αβγ)/(αγ))=((±6)/6)⇒β=±1  ((αβγ)/(αβ))=((±6)/2)=±3  (α,β,γ)=(2,1,3)            Or  (α,β,γ)=(−2,−1,−3) (Not included in options)    (2)  2,1,3  −.−.−.−.−.−  2.     α+β=6p_1 ⇒p_1 =((2+1)/6)=(1/2)    β+γ=6p_2 ⇒p_2 =((1+3)/6)=(2/3)    γ+α=6p_2 ⇒p_3 =((3+2)/6)=(5/6)  (p_1 ,p_2 ,p_3 )=((1/2),(2/3),(5/6))  (1) (1/2),(2/3),(5/6)       ⋮
α,βarerootsofx26p1x+2=0;β,γarerootsofx26p2x+3=0;γ,αarerootsofx26p3x+6=0;p1,p2&p3arepositivethen:Choosethecorrectanswer1.Thevaluesofα,β,γrespectivelyare(1)2,3,1(2)2,1,3(3)1,2,3(4)1,2,32.Thevaluesofp1,p2,p3respectivelyare(1)12,23,56(2)1,2,5(3)6,1,4(4)2,32,65.....1.αβ=2,βγ=3,γα=6Multiplyingα2β2γ2=36αβγ=±6αβγβγ=±63α=±2αβγαγ=±66β=±1αβγαβ=±62=±3(α,β,γ)=(2,1,3)Or(α,β,γ)=(2,1,3)(Notincludedinoptions)(2)2,1,3.....2.α+β=6p1p1=2+16=12β+γ=6p2p2=1+36=23γ+α=6p2p3=3+26=56(p1,p2,p3)=(12,23,56)(1)12,23,56
Commented by Tinkutara last updated on 26/Jan/18
Thanks Sir! Rest I solved.

Leave a Reply

Your email address will not be published. Required fields are marked *