Menu Close

In-a-ABC-if-s-a-a-b-s-c-b-c-then-prove-that-r-1-r-2-r-3-are-in-A-P-Here-r-1-r-2-and-r-3-are-the-exradii-opposite-to-angles-A-B-and-C-respectively-




Question Number 16359 by Tinkutara last updated on 21/Jun/17
In a ΔABC if ((s − a)/(a − b)) = ((s − c)/(b − c)) , then  prove that r_1 , r_2 , r_3  are in A.P.  Here r_1 , r_2  and r_3  are the exradii  opposite to angles A, B and C respectively.
InaΔABCifsaab=scbc,thenprovethatr1,r2,r3areinA.P.Herer1,r2andr3aretheexradiioppositetoanglesA,BandCrespectively.
Answered by ajfour last updated on 21/Jun/17
 r_1 =(Δ/(s−a)) , r_2 =(Δ/(s−b)) , r_3 =(Δ/(s−c))  Given ((s−a)/((s−b)−(s−a)))=((s−c)/((s−c)−(s−b)))    or (((s−b)−(s−a))/(s−a))=(((s−c)−(s−b))/(s−c))         (r_1 /r_2 )−1= 1−(r_3 /r_2 )  or    2r_2  = r_1 +r_3    ⇒   r_1 , r_2 , and r_3  are in A.P.
r1=Δsa,r2=Δsb,r3=ΔscGivensa(sb)(sa)=sc(sc)(sb)or(sb)(sa)sa=(sc)(sb)scr1r21=1r3r2or2r2=r1+r3r1,r2,andr3areinA.P.
Commented by Tinkutara last updated on 21/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *