Menu Close

In-a-ABC-if-s-a-a-b-s-c-b-c-then-prove-that-r-1-r-2-r-3-are-in-A-P-Here-r-1-r-2-and-r-3-are-the-exradii-opposite-to-angles-A-B-and-C-respectively-




Question Number 16359 by Tinkutara last updated on 21/Jun/17
In a ΔABC if ((s − a)/(a − b)) = ((s − c)/(b − c)) , then  prove that r_1 , r_2 , r_3  are in A.P.  Here r_1 , r_2  and r_3  are the exradii  opposite to angles A, B and C respectively.
$$\mathrm{In}\:\mathrm{a}\:\Delta{ABC}\:\mathrm{if}\:\frac{{s}\:−\:{a}}{{a}\:−\:{b}}\:=\:\frac{{s}\:−\:{c}}{{b}\:−\:{c}}\:,\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} ,\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}. \\ $$$$\mathrm{Here}\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} \:\mathrm{and}\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{exradii} \\ $$$$\mathrm{opposite}\:\mathrm{to}\:\mathrm{angles}\:{A},\:{B}\:\mathrm{and}\:{C}\:\mathrm{respectively}. \\ $$
Answered by ajfour last updated on 21/Jun/17
 r_1 =(Δ/(s−a)) , r_2 =(Δ/(s−b)) , r_3 =(Δ/(s−c))  Given ((s−a)/((s−b)−(s−a)))=((s−c)/((s−c)−(s−b)))    or (((s−b)−(s−a))/(s−a))=(((s−c)−(s−b))/(s−c))         (r_1 /r_2 )−1= 1−(r_3 /r_2 )  or    2r_2  = r_1 +r_3    ⇒   r_1 , r_2 , and r_3  are in A.P.
$$\:{r}_{\mathrm{1}} =\frac{\Delta}{{s}−{a}}\:,\:{r}_{\mathrm{2}} =\frac{\Delta}{{s}−{b}}\:,\:{r}_{\mathrm{3}} =\frac{\Delta}{{s}−{c}} \\ $$$${Given}\:\frac{{s}−{a}}{\left({s}−{b}\right)−\left({s}−{a}\right)}=\frac{{s}−{c}}{\left({s}−{c}\right)−\left({s}−{b}\right)} \\ $$$$ \\ $$$${or}\:\frac{\left({s}−{b}\right)−\left({s}−{a}\right)}{{s}−{a}}=\frac{\left({s}−{c}\right)−\left({s}−{b}\right)}{{s}−{c}} \\ $$$$\:\:\:\:\:\:\:\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }−\mathrm{1}=\:\mathrm{1}−\frac{{r}_{\mathrm{3}} }{{r}_{\mathrm{2}} } \\ $$$${or}\:\:\:\:\mathrm{2}{r}_{\mathrm{2}} \:=\:{r}_{\mathrm{1}} +{r}_{\mathrm{3}} \: \\ $$$$\Rightarrow\:\:\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} ,\:{and}\:{r}_{\mathrm{3}} \:{are}\:{in}\:{A}.{P}.\: \\ $$
Commented by Tinkutara last updated on 21/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *