Menu Close

In-a-competition-a-school-awarded-medals-in-different-categories-36-medals-in-dance-12-in-dramatics-and-18-medals-in-music-If-these-medals-went-to-total-45-and-only-4-persons-got-medals-in-all-three




Question Number 28805 by NECx last updated on 30/Jan/18
In a competition, a school awarded  medals in different categories.  36 medals in dance,12 in dramatics  and 18 medals in music.If these  medals went to total 45,and only  4 persons got medals in all three  catogories.Using set notations,  how many received in exactly  two of these categories?
$${In}\:{a}\:{competition},\:{a}\:{school}\:{awarded} \\ $$$${medals}\:{in}\:{different}\:{categories}. \\ $$$$\mathrm{36}\:{medals}\:{in}\:{dance},\mathrm{12}\:{in}\:{dramatics} \\ $$$${and}\:\mathrm{18}\:{medals}\:{in}\:{music}.{If}\:{these} \\ $$$${medals}\:{went}\:{to}\:{total}\:\mathrm{45},{and}\:{only} \\ $$$$\mathrm{4}\:{persons}\:{got}\:{medals}\:{in}\:{all}\:{three} \\ $$$${catogories}.{Using}\:{set}\:{notations}, \\ $$$${how}\:{many}\:{received}\:{in}\:{exactly} \\ $$$${two}\:{of}\:{these}\:{categories}? \\ $$
Answered by Rasheed.Sindhi last updated on 30/Jan/18
A:Set of medals in dance  B:Set of medals in drama  C:Set of medals in music  n(A)=36 , n(B)=12 ,  n(C)=18  n(A∪B∪C)=45 , n(A∩B∩C)=4  −.−.−.−.−.−  n(A∪B∪C)=n(A)+n(B)+n(C)                −n(A∩B)−n(B∩C)−n(A∩C)                 +n(A∩B∩C)   n(A∩B)+n(B∩C)+n(A∩C)=                   n(A)+n(B)+n(C)−n(A∪B∪C)                                       +n(A∩B∩C)  n(A∩B)+n(B∩C)+n(A∩C)=36+12+18−45+4                                              =25  Each of (A∩B) , (B∩C) & (A∩C) contains    (A∩B∩C)  So,  Number of medals received in exactly two  catagaries:   n(A∩B)+n(B∩C)+n(A∩C)−3×n(A∩B∩C)                         =25−3×4=13
$$\mathrm{A}:\mathrm{Set}\:\mathrm{of}\:\mathrm{medals}\:\mathrm{in}\:\mathrm{dance} \\ $$$$\mathrm{B}:\mathrm{Set}\:\mathrm{of}\:\mathrm{medals}\:\mathrm{in}\:\mathrm{drama} \\ $$$$\mathrm{C}:\mathrm{Set}\:\mathrm{of}\:\mathrm{medals}\:\mathrm{in}\:\mathrm{music} \\ $$$$\mathrm{n}\left(\mathrm{A}\right)=\mathrm{36}\:,\:\mathrm{n}\left(\mathrm{B}\right)=\mathrm{12}\:,\:\:\mathrm{n}\left(\mathrm{C}\right)=\mathrm{18} \\ $$$$\mathrm{n}\left(\mathrm{A}\cup\mathrm{B}\cup\mathrm{C}\right)=\mathrm{45}\:,\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right)=\mathrm{4} \\ $$$$−.−.−.−.−.− \\ $$$$\mathrm{n}\left(\mathrm{A}\cup\mathrm{B}\cup\mathrm{C}\right)=\mathrm{n}\left(\mathrm{A}\right)+\mathrm{n}\left(\mathrm{B}\right)+\mathrm{n}\left(\mathrm{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)−\mathrm{n}\left(\mathrm{B}\cap\mathrm{C}\right)−\mathrm{n}\left(\mathrm{A}\cap\mathrm{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)+\mathrm{n}\left(\mathrm{B}\cap\mathrm{C}\right)+\mathrm{n}\left(\mathrm{A}\cap\mathrm{C}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}\left(\mathrm{A}\right)+\mathrm{n}\left(\mathrm{B}\right)+\mathrm{n}\left(\mathrm{C}\right)−\mathrm{n}\left(\mathrm{A}\cup\mathrm{B}\cup\mathrm{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)+\mathrm{n}\left(\mathrm{B}\cap\mathrm{C}\right)+\mathrm{n}\left(\mathrm{A}\cap\mathrm{C}\right)=\mathrm{36}+\mathrm{12}+\mathrm{18}−\mathrm{45}+\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{25} \\ $$$$\mathrm{Each}\:\mathrm{of}\:\left(\mathrm{A}\cap\mathrm{B}\right)\:,\:\left(\mathrm{B}\cap\mathrm{C}\right)\:\&\:\left(\mathrm{A}\cap\mathrm{C}\right)\:\mathrm{contains} \\ $$$$\:\:\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\mathrm{So}, \\ $$$$\mathrm{Number}\:\mathrm{of}\:\mathrm{medals}\:\mathrm{received}\:\mathrm{in}\:\mathrm{exactly}\:\mathrm{two} \\ $$$$\mathrm{catagaries}: \\ $$$$\:\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\right)+\mathrm{n}\left(\mathrm{B}\cap\mathrm{C}\right)+\mathrm{n}\left(\mathrm{A}\cap\mathrm{C}\right)−\mathrm{3}×\mathrm{n}\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{25}−\mathrm{3}×\mathrm{4}=\mathrm{13} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *