Menu Close

In-a-competition-there-are-200-children-50-are-men-the-rest-are-women-If-the-probability-of-selecting-a-child-is-0-05-how-many-are-the-competitor-




Question Number 129323 by harckinwunmy last updated on 14/Jan/21
In a competition there are 200 children, 50 are men  the rest are women. If the probability of selecting a   child is 0.05, how many are the competitor?
$${In}\:{a}\:{competition}\:{there}\:{are}\:\mathrm{200}\:{children},\:\mathrm{50}\:{are}\:{men} \\ $$$${the}\:{rest}\:{are}\:{women}.\:{If}\:{the}\:{probability}\:{of}\:{selecting}\:{a}\: \\ $$$${child}\:{is}\:\mathrm{0}.\mathrm{05},\:{how}\:{many}\:{are}\:{the}\:{competitor}? \\ $$
Answered by Ar Brandon last updated on 15/Jan/21
((200)/(200+50+x))=0.05=(1/(20))  ⇒4000=200+50+x ⇒x=3750 women  Total=200+50+3750=4000 competitors
$$\frac{\mathrm{200}}{\mathrm{200}+\mathrm{50}+\mathrm{x}}=\mathrm{0}.\mathrm{05}=\frac{\mathrm{1}}{\mathrm{20}} \\ $$$$\Rightarrow\mathrm{4000}=\mathrm{200}+\mathrm{50}+\mathrm{x}\:\Rightarrow\mathrm{x}=\mathrm{3750}\:\mathrm{women} \\ $$$$\mathrm{Total}=\mathrm{200}+\mathrm{50}+\mathrm{3750}=\mathrm{4000}\:\mathrm{competitors} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *