Menu Close

in-a-geometric-series-the-first-term-a-common-ratio-r-If-S-n-denotes-the-sum-of-the-n-terms-and-U-n-n-1-n-S-n-then-rS-n-1-r-U-n-equals-to-a-0-b-n-c-na-d-na




Question Number 38559 by nishant last updated on 27/Jun/18
in a geometric series, the first term  =a, common ratio=r. If S_n  denotes  the sum of the n terms and U_n =Σ_(n=1) ^n S_(n,)   then rS_n +(1−r)U_(n  ) equals to  (a)  0      (b)  n     (c)    na    (d)nar
inageometricseries,thefirstterm=a,commonratio=r.IfSndenotesthesumofthentermsandUn=nn=1Sn,thenrSn+(1r)Unequalsto(a)0(b)n(c)na(d)nar
Answered by MrW3 last updated on 27/Jun/18
A_n =ar^(n−1)   S_n =a+ar+...+ar^(n−1)   rS_n =ar+ar^2 +...+ar^(n−1) +ar^n   rS_n =a+ar+ar^2 +...+ar^(n−1) +ar^n −a  rS_n =S_n +ar^n −a  ⇒S_n =((a(1−r^n ))/(1−r))=(a/(1−r))−(a/(1−r))×r^n   U_n =Σ_(k=1) ^n S_k =((an)/(1−r))−(a/(1−r))(r+r^2 +...+r^n )  U_n =((an)/(1−r))−(a/(1−r))×((r(1−r^n ))/(1−r))  (1−r)U_n =na−((ar(1−r^n ))/(1−r))  rS_n =((ar(1−r^n ))/(1−r))  ⇒rS_n +(1−r)U_n =na  ⇒Answer (c) is right.
An=arn1Sn=a+ar++arn1rSn=ar+ar2++arn1+arnrSn=a+ar+ar2++arn1+arnarSn=Sn+arnaSn=a(1rn)1r=a1ra1r×rnUn=nk=1Sk=an1ra1r(r+r2++rn)Un=an1ra1r×r(1rn)1r(1r)Un=naar(1rn)1rrSn=ar(1rn)1rrSn+(1r)Un=naAnswer(c)isright.

Leave a Reply

Your email address will not be published. Required fields are marked *