Menu Close

In-a-sequence-if-r-th-term-is-given-by-T-r-2-T-r-1-1-then-give-it-s-n-th-term-in-terms-of-it-s-1-st-term-Given-T-1-2-




Question Number 56074 by Kunal12588 last updated on 10/Mar/19
In a sequence if r^(th)  term is given by  T_r =2×T_(r−1) +1  then give it′s n^(th)  term in terms of  it′s 1^(st)  term  [Given :     T_1 =2]
InasequenceifrthtermisgivenbyTr=2×Tr1+1thengiveitsnthtermintermsofits1stterm[Given:T1=2]
Commented by maxmathsup by imad last updated on 10/Mar/19
we have u_n =2 u_(n−1) +1   with u_1 =2  let find u_n  interms of n  let v_n =u_n +α  let detremine α /v_n be ageom.sequence  v_(n+1) =u_(n+1) +α =2u_n +1 +α =qv_n =q(u_n  +α) ⇒q=2 and 1+α=qα ⇒  (q−1)α =1 ⇒α=1 ⇒v_n =u_n +1 is geometrique let prove that  v_(n+1) −v_n =u_(n+1) +1 =2u_n +1+1 =2(u_n +1) =2v_n  ⇒  v_n =v_1 q^(n−1)  =3 . 2^(n−1)  ⇒u_n =v_n −1 =3.2^(n−1) −1.
wehaveun=2un1+1withu1=2letfindunintermsofnletvn=un+αletdetremineα/vnbeageom.sequencevn+1=un+1+α=2un+1+α=qvn=q(un+α)q=2and1+α=qα(q1)α=1α=1vn=un+1isgeometriqueletprovethatvn+1vn=un+1+1=2un+1+1=2(un+1)=2vnvn=v1qn1=3.2n1un=vn1=3.2n11.
Commented by maxmathsup by imad last updated on 10/Mar/19
error of typo v_(n+1) =u_(n+1) +1
erroroftypovn+1=un+1+1
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19
T_2 =2T_1 +1→2×2+1→2^2 +2^0   T_3 =2T_2 +1→2(2^2 +1)+1→2^3 +2^1 +2^0   T_4 =2T_3 +1→2(2^3 +2^1 +2^0 )+1→2^4 +2^2 +2^1 +1  T_5 =2T_4 +1→2(2^4 +2^2 +2^1 +1)+1→2^5 +2^3 +2^2 +2^1 +1  ...  T_n =2^n +2^(n−2) +2^(n−3) +2^(n−4) +...+1←total n terms  T_n =2^n +((2^(n−2) (1−(1/2^(n−1) )))/((1−(1/2))))[s=((a(1−r^n ))/((1−r)))]  T_n =2^n +2^(n−1) (1−(1/2^(n−1) ))  T_n =2^n +2^(n−1) −1 →it is the answer
T2=2T1+12×2+122+20T3=2T2+12(22+1)+123+21+20T4=2T3+12(23+21+20)+124+22+21+1T5=2T4+12(24+22+21+1)+125+23+22+21+1Tn=2n+2n2+2n3+2n4++1totalntermsTn=2n+2n2(112n1)(112)[s=a(1rn)(1r)]Tn=2n+2n1(112n1)Tn=2n+2n11itistheanswer
Commented by Kunal12588 last updated on 10/Mar/19
yes sir  it is correct  2^(n−1) ×2+2^(n−1) −1=3×2^(n−1) −1
yessiritiscorrect2n1×2+2n11=3×2n11
Commented by Kunal12588 last updated on 10/Mar/19
thank you
thankyou
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19
thank you sir...
thankyousir
Answered by mr W last updated on 10/Mar/19
let T_n =Ap^n +C  T_n =2T_(n−1) +1  Ap^n +C−2Ap^(n−1) −2C−1=0  A(p−2)p^(n−1) −(C+1)=0  ⇒p=2  ⇒C=−1  ⇒T_n =A×2^n −1  T_1 =A×2−1=2  ⇒A=(3/2)  ⇒T_n =3×2^(n−1) −1    if the question is T_n =3T_(n−1) +1  Ap^n +C−3Ap^(n−1) −3C−1=0  A(p−3)p^(n−1) −(2C+1)=0  ⇒p=3  ⇒C=−(1/2)  ⇒T_n =A×3^n −(1/2)  ⇒T_1 =A×3−(1/2)=2  ⇒A=(5/6)  ⇒T_n =(1/2)(5×3^(n−1) −1)
letTn=Apn+CTn=2Tn1+1Apn+C2Apn12C1=0A(p2)pn1(C+1)=0p=2C=1Tn=A×2n1T1=A×21=2A=32Tn=3×2n11ifthequestionisTn=3Tn1+1Apn+C3Apn13C1=0A(p3)pn1(2C+1)=0p=3C=12Tn=A×3n12T1=A×312=2A=56Tn=12(5×3n11)

Leave a Reply

Your email address will not be published. Required fields are marked *