Menu Close

In-a-square-ABCD-there-is-a-quarter-of-a-circle-ADC-AD-DC-put-a-point-N-in-the-arc-AC-such-that-AN-1-and-NC-2-2-find-BN-




Question Number 183773 by HeferH last updated on 30/Dec/22
 In a square (ABCD) there is a quarter of   a circle ADC (AD = DC), put a point N   in the arc AC such that AN = 1 and NC = 2(√2)   find BN.
Inasquare(ABCD)thereisaquarterofacircleADC(AD=DC),putapointNinthearcACsuchthatAN=1andNC=22findBN.
Answered by mr W last updated on 30/Dec/22
Commented by mr W last updated on 30/Dec/22
AC=(√2)a  AC^2 =1^2 +(2(√2))^2 −2×1×2(√2)×cos 135°  2a^2 =13  ⇒a=(√((13)/2))  cos α=((2(√2))/(2a))=(2/( (√(13)))) ⇒sin α=(3/( (√(13))))=cos β  BN^2 =(2(√2))^2 +((√((13)/2)))^2 −2(2(√2))×(√(((13)/2) ))×(3/( (√(13))))=(5/2)  ⇒BN=((√(10))/2) ✓
AC=2aAC2=12+(22)22×1×22×cos135°2a2=13a=132cosα=222a=213sinα=313=cosβBN2=(22)2+(132)22(22)×132×313=52BN=102
Answered by mr W last updated on 30/Dec/22
Method II  D as origin (0,0)  say N(x,y)  x^2 +y^2 =a^2   x^2 +(a−y)^2 =1^2  ⇒a^2 −ay=(1/2)  (a−x)^2 +y^2 =(2(√2))^2  ⇒a^2 −ax=4  (((a^2 −4)/a))^2 +(((a^2 −(1/2))/a))^2 =a^2   a^4 −9a^2 +((65)/4)=0  ⇒a^2 =((13)/2) ⇒a=(√((13)/2))  ⇒x=(5/( (√(26))))  ⇒y=((12)/( (√(26))))  BN=(√(((√((13)/2))−(5/( (√(26)))))^2 +((√((13)/2))−((12)/( (√(26)))))^2 ))         =((√(10))/2) ✓
MethodIIDasorigin(0,0)sayN(x,y)x2+y2=a2x2+(ay)2=12a2ay=12(ax)2+y2=(22)2a2ax=4(a24a)2+(a212a)2=a2a49a2+654=0a2=132a=132x=526y=1226BN=(132526)2+(1321226)2=102

Leave a Reply

Your email address will not be published. Required fields are marked *