Menu Close

In-a-trapezoid-ABCD-sides-AB-and-CD-are-parallel-and-side-BC-CD-5-If-DC-B-120-and-BA-D-60-Find-the-area-of-ABCD-




Question Number 111539 by Aina Samuel Temidayo last updated on 04/Sep/20
In a trapezoid ABCD, sides AB and  CD are parallel and side BC=CD=(√5).  If DC^� B =120° and BA^� D=60°. Find  the area of ABCD.
InatrapezoidABCD,sidesABandCDareparallelandsideBC=CD=5.IfDCB^=120°andBAD^=60°.FindtheareaofABCD.
Answered by 1549442205PVT last updated on 04/Sep/20
Commented by 1549442205PVT last updated on 04/Sep/20
Draw the line d parallel to BC cutting  AB at point E.Then BCDE is  parallelogram ,so from the hypothesis  BC=CD=(√(5 )) and DAB^(�) =60° we have   DE=BC=(√5) ,DEA^(�) =CBA^(�) =60°(since  BCD^(�) =60°)It follows that ΔADE is  equilateralu (since it has two angles  equal to 60°).From DF=(((√5).(√3))/2)=((√(15))/2)  (DF is the altitude of the equilateral  triangle)AB=AE+BE=2(√5)  Therefore,S_(ABCD) =((AB+CD)/2)×DF  =((2(√5)+(√5))/2)×((√(15))/2)=((3(√(75)))/4)=((15(√3))/4)  (cm^2 )
DrawthelinedparalleltoBCcuttingABatpointE.ThenBCDEisparallelogram,sofromthehypothesisBC=CD=5andDAB^=60°wehaveDE=BC=5,DEA^=CBA^=60°(sinceBCD^=60°)ItfollowsthatΔADEisequilateralu(sinceithastwoanglesequalto60°).FromDF=5.32=152(DFisthealtitudeoftheequilateraltriangle)AB=AE+BE=25Therefore,SABCD=AB+CD2×DF=25+52×152=3754=1534(cm2)
Commented by Aina Samuel Temidayo last updated on 04/Sep/20
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *