Menu Close

In-a-triangle-ABC-1-sinA-sinB-sinC-2R-2-2-sinA-sinB-sinC-r-2R-sinA-sinB-sinC-3-acosA-bcosB-ccosC-abc-2R-2-4-sinA-sinB-sinC-R-2r-sinA-sinB-sinC-




Question Number 18501 by Tinkutara last updated on 22/Jul/17
In a triangle ABC  (1) sinA.sinB.sinC = (Δ/(2R^2 ))  (2) sinA.sinB.sinC = (r/(2R))(sinA + sinB + sinC)  (3) acosA + bcosB + ccosC = ((abc)/(2R^2 ))  (4) sinA.sinB.sinC = (R/(2r))(sinA + sinB + sinC)
$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{sin}{A}.\mathrm{sin}{B}.\mathrm{sin}{C}\:=\:\frac{\Delta}{\mathrm{2}{R}^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:\mathrm{sin}{A}.\mathrm{sin}{B}.\mathrm{sin}{C}\:=\:\frac{{r}}{\mathrm{2}{R}}\left(\mathrm{sin}{A}\:+\:\mathrm{sin}{B}\:+\:\mathrm{sin}{C}\right) \\ $$$$\left(\mathrm{3}\right)\:{a}\mathrm{cos}{A}\:+\:{b}\mathrm{cos}{B}\:+\:{c}\mathrm{cos}{C}\:=\:\frac{{abc}}{\mathrm{2}{R}^{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\mathrm{sin}{A}.\mathrm{sin}{B}.\mathrm{sin}{C}\:=\:\frac{{R}}{\mathrm{2}{r}}\left(\mathrm{sin}{A}\:+\:\mathrm{sin}{B}\:+\:\mathrm{sin}{C}\right) \\ $$
Commented by b.e.h.i.8.3.417@gmail.com last updated on 22/Jul/17
Δ=(1/2)ab.sinC=(1/2).2R.sinA.2R.sinB.sinC=  =2R^2 .sinA.sinB.sinC⇒answer (1) is  correct.  Δ=p.r=((a+b+c)/2).r=R(sinA+sinB+sinC).r⇒  ⇒2R^2 ΠsinA=R.rΣsinA  ⇒ΠsinA=(r/(2R)).(ΣsinA)⇒answer(2) is  correct.  answer (3) is also,correct.  answer(4) ,is incorrect.
$$\Delta=\frac{\mathrm{1}}{\mathrm{2}}{ab}.{sinC}=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}{R}.{sinA}.\mathrm{2}{R}.{sinB}.{sinC}= \\ $$$$=\mathrm{2}{R}^{\mathrm{2}} .{sinA}.{sinB}.{sinC}\Rightarrow{answer}\:\left(\mathrm{1}\right)\:{is} \\ $$$${correct}. \\ $$$$\Delta={p}.{r}=\frac{{a}+{b}+{c}}{\mathrm{2}}.{r}={R}\left({sinA}+{sinB}+{sinC}\right).{r}\Rightarrow \\ $$$$\Rightarrow\mathrm{2}{R}^{\mathrm{2}} \Pi{sinA}={R}.{r}\Sigma{sinA} \\ $$$$\Rightarrow\Pi{sinA}=\frac{{r}}{\mathrm{2}{R}}.\left(\Sigma{sinA}\right)\Rightarrow{answer}\left(\mathrm{2}\right)\:{is} \\ $$$${correct}. \\ $$$${answer}\:\left(\mathrm{3}\right)\:{is}\:{also},{correct}. \\ $$$${answer}\left(\mathrm{4}\right)\:,{is}\:{incorrect}. \\ $$
Commented by Tinkutara last updated on 23/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *