Menu Close

In-a-triangle-ABC-with-fixed-base-BC-the-vertex-A-moves-such-that-cos-B-cos-C-4-sin-2-A-2-If-a-b-and-c-denote-the-lengths-of-the-sides-of-the-triangle-opposite-to-the-angles-A-B-and-C-resp




Question Number 18320 by Tinkutara last updated on 18/Jul/17
In a triangle ABC with fixed base BC,  the vertex A moves such that cos B +  cos C = 4 sin^2  (A/2) . If a, b and c denote  the lengths of the sides of the triangle  opposite to the angles A, B and C  respectively, then  (1) b + c = 4a  (2) b + c = 2a  (3) Locus of point A is an ellipse  (4) Locus of point A is a pair of straight  lines
InatriangleABCwithfixedbaseBC,thevertexAmovessuchthatcosB+cosC=4sin2A2.Ifa,bandcdenotethelengthsofthesidesofthetriangleoppositetotheanglesA,BandCrespectively,then(1)b+c=4a(2)b+c=2a(3)LocusofpointAisanellipse(4)LocusofpointAisapairofstraightlines
Answered by ajfour last updated on 19/Jul/17
Commented by ajfour last updated on 19/Jul/17
Given:   cos B+cos C=4sin^2 (A/2)  and a=constant.  ⇒  cos B+cos C=2(1−cos A)  cos B=(x/c) ,  cos C=((a−x)/b) ,  cos A=((b^2 +c^2 −a^2 )/(2bc))   x^2 +y^2 =c^2   (a−x)^2 +y^2 =b^2   subtracting we get     a(2x−a)=−(b+c)(b−c)  ⇒  x= (a/2)−(((b+c)(b−c))/(2a))            =((a^2 −(b+c)(b−c))/(2a))    .....(i)  from given condition    (x/c)+((a−x)/b)=2(1−cos A)  ⇒   ((ac+x(b−c))/(bc))=2(1−((b^2 +c^2 −a^2 )/(2bc)))  replacing x from (i):   (( a)/b)+(((b−c)/(2abc)))[a^2 −(b+c)(b−c)]                                  =2[((2bc−(b^2 +c^2 )+a^2 )/(2bc))]  2a^2 c+a^2 (b−c)−(b−c)^2 (b+c)                              =−2a(b−c)^2 +2a^3   ⇒a^2 (2c+b−c−2a)                             =(b−c)^2 (b+c−2a)   a^2 (b+c−2a)=(b−c)^2 (b+c−2a)  ⇒  2a=b+c   or    a=∣b−c∣  If we accept : b+c =2a=constant,  then locus of A is an ellipse with  foci at B and C.   If we accept a=∣b−c∣ then A lies                      on produced BC and on either side.
Given:cosB+cosC=4sin2A2anda=constant.cosB+cosC=2(1cosA)cosB=xc,cosC=axb,cosA=b2+c2a22bcx2+y2=c2(ax)2+y2=b2subtractingwegeta(2xa)=(b+c)(bc)x=a2(b+c)(bc)2a=a2(b+c)(bc)2a..(i)fromgivenconditionxc+axb=2(1cosA)ac+x(bc)bc=2(1b2+c2a22bc)replacingxfrom(i):ab+(bc2abc)[a2(b+c)(bc)]=2[2bc(b2+c2)+a22bc]2a2c+a2(bc)(bc)2(b+c)=2a(bc)2+2a3a2(2c+bc2a)=(bc)2(b+c2a)a2(b+c2a)=(bc)2(b+c2a)2a=b+cora=∣bcIfweaccept:b+c=2a=constant,thenlocusofAisanellipsewithfociatBandC.Ifweaccepta=∣bcthenAliesonproducedBCandoneitherside.
Commented by Tinkutara last updated on 19/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *