In-a-triangle-ABC-with-fixed-base-BC-the-vertex-A-moves-such-that-cos-B-cos-C-4-sin-2-A-2-If-a-b-and-c-denote-the-lengths-of-the-sides-of-the-triangle-opposite-to-the-angles-A-B-and-C-resp Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 18320 by Tinkutara last updated on 18/Jul/17 InatriangleABCwithfixedbaseBC,thevertexAmovessuchthatcosB+cosC=4sin2A2.Ifa,bandcdenotethelengthsofthesidesofthetriangleoppositetotheanglesA,BandCrespectively,then(1)b+c=4a(2)b+c=2a(3)LocusofpointAisanellipse(4)LocusofpointAisapairofstraightlines Answered by ajfour last updated on 19/Jul/17 Commented by ajfour last updated on 19/Jul/17 Given:cosB+cosC=4sin2A2anda=constant.⇒cosB+cosC=2(1−cosA)cosB=xc,cosC=a−xb,cosA=b2+c2−a22bcx2+y2=c2(a−x)2+y2=b2subtractingwegeta(2x−a)=−(b+c)(b−c)⇒x=a2−(b+c)(b−c)2a=a2−(b+c)(b−c)2a…..(i)fromgivenconditionxc+a−xb=2(1−cosA)⇒ac+x(b−c)bc=2(1−b2+c2−a22bc)replacingxfrom(i):ab+(b−c2abc)[a2−(b+c)(b−c)]=2[2bc−(b2+c2)+a22bc]2a2c+a2(b−c)−(b−c)2(b+c)=−2a(b−c)2+2a3⇒a2(2c+b−c−2a)=(b−c)2(b+c−2a)a2(b+c−2a)=(b−c)2(b+c−2a)⇒2a=b+cora=∣b−c∣Ifweaccept:b+c=2a=constant,thenlocusofAisanellipsewithfociatBandC.Ifweaccepta=∣b−c∣thenAliesonproducedBCandoneitherside. Commented by Tinkutara last updated on 19/Jul/17 ThanksSir! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-sinx-cosx-dx-Next Next post: The-pulley-arrangements-are-identical-The-mass-of-the-rope-is-negligible-In-a-the-mass-m-is-lifted-up-by-attaching-a-mass-2m-to-the-other-end-of-the-rope-In-b-m-is-lifted-up-by-pulling-the- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.