Menu Close

In-AB-C-cos-2-A-cos-2-B-cos-2-C-1-Prove-that-AB-C-is-right-angled-




Question Number 164339 by mnjuly1970 last updated on 16/Jan/22
      In  AB^Δ C   :   cos^( 2) (A )+ cos^( 2) (B )+ cos^( 2) ( C )=1  .          Prove that  AB^Δ C   is   right angled.        −−−−−−−−
InABCΔ:cos2(A)+cos2(B)+cos2(C)=1.ProvethatABCΔisrightangled.
Answered by mindispower last updated on 17/Jan/22
cos^2 (c)−1=−sin^2 (A+B)  =−sin^2 (A)cos^2 (B)−sin^2 (B)cos^2 (A)−((sin(2A)sin(2B))/2)  cos^2 (A)+cos^2 (B)−sin^2 (A)cos^2 (B)−sin^2 (B)cos^2 (A)−=0  ⇔2cos^2 (A)cos^2 (B)−2sin(A)sin(B)cos(A)cos(B)=0  cos(A)cos(B)(cos(A+B))=0  cos(A)=0⇒A=(π/2),Or cos(B)=0⇒B=(π/2)  A+B=(π/2)⇒C=π−(A+B)=(π/2)
cos2(c)1=sin2(A+B)=sin2(A)cos2(B)sin2(B)cos2(A)sin(2A)sin(2B)2cos2(A)+cos2(B)sin2(A)cos2(B)sin2(B)cos2(A)=02cos2(A)cos2(B)2sin(A)sin(B)cos(A)cos(B)=0cos(A)cos(B)(cos(A+B))=0cos(A)=0A=π2,Orcos(B)=0B=π2A+B=π2C=π(A+B)=π2
Commented by mnjuly1970 last updated on 18/Jan/22
      In  AB^Δ C   :   cos^( 2) (A )+ cos^( 2) (B )+ cos^( 2) ( C )=1  .          Prove that  AB^Δ C   is   right angled.        −−−−−−−−   thank you very much sir...    grateful
InABCΔ:cos2(A)+cos2(B)+cos2(C)=1.ProvethatABCΔisrightangled.thankyouverymuchsirgrateful
Commented by mindispower last updated on 19/Jan/22
wihe Pleasur have a nice day
wihePleasurhaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *