Menu Close

in-AB-C-cos-A-cos-B-cos-C-7-4-R-r-




Question Number 170856 by mnjuly1970 last updated on 01/Jun/22
    in AB^Δ C :  cos (A)+cos(B)+cos(C)=(7/4)     (R/r) =?
inABCΔ:cos(A)+cos(B)+cos(C)=74Rr=?
Commented by mr W last updated on 01/Jun/22
cos A+cos B+cos C=(7/4) not possible,  since cos A+cos B+cos C≤(3/2).
cosA+cosB+cosC=74notpossible,sincecosA+cosB+cosC32.
Commented by mnjuly1970 last updated on 02/Jun/22
yes you are right sir ...  i appologize...i think...    sin(A)+sin(B)+sin(B)=^?  1+(r/R)      ≤^(R≥2r)  1+(1/2)=(3/2)
yesyouarerightsiriappologizeithinksin(A)+sin(B)+sin(B)=?1+rRR2r1+12=32
Answered by mr W last updated on 01/Jun/22
assume cos A+cos B+cos C=(5/4).    a=2R sin A, b=2R sin B, c=2R sin C  Δ=((ab sin C)/2)  r=((2Δ)/(a+b+c))  (R/r)=((R(a+b+c))/(2Δ))  (R/r)=((R(a+b+c))/(ab sin C))  (R/r)=((2R^2 (sin A+sin B+sin C))/(4R^2  sin A sin B sin C))  (R/r)=((sin A+sin B+sin C)/(2 sin A sin B sin C))  (R/r)=((4 cos (A/2) cos (B/2) cos (C/2))/(16  sin (A/2)cos (C/2) sin (B/2)cos (B/2) sin (C/2)cos (C/2) ))  (R/r)=(1/(4  sin (A/2) sin (B/2) sin (C/2) ))  (R/r)=(1/(cos A+cos B+cos C−1 ))  (R/r)=(1/((5/4)−1 ))=4 ✓
assumecosA+cosB+cosC=54.a=2RsinA,b=2RsinB,c=2RsinCΔ=absinC2r=2Δa+b+cRr=R(a+b+c)2ΔRr=R(a+b+c)absinCRr=2R2(sinA+sinB+sinC)4R2sinAsinBsinCRr=sinA+sinB+sinC2sinAsinBsinCRr=4cosA2cosB2cosC216sinA2cosC2sinB2cosB2sinC2cosC2Rr=14sinA2sinB2sinC2Rr=1cosA+cosB+cosC1Rr=1541=4
Commented by MJS_new last updated on 01/Jun/22
I think there′s no such triangle
Ithinktheresnosuchtriangle
Commented by mr W last updated on 01/Jun/22
you are right sir!  cos A+cos B+cos C must be ≤(3/2).
youarerightsir!cosA+cosB+cosCmustbe32.
Commented by mnjuly1970 last updated on 02/Jun/22
  thanks  alot...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *